精英家教网 > 高中数学 > 题目详情

(12分)

已知抛物线与直线相交于A、B两点,

(1)求证OA⊥OB

(2)当△OAB的面积等于时,求K的值。

 

【答案】

(1)

(1)证明:设

联立方程得,因为直线与抛物线相交于A、B两点,

所以 

推出

                                                           3分

所以

即 OA⊥OB                                                   6分

(2) 由直线恒过点M(-1,0),

所以 

所以,解得,                        11分

故所求                                              12分

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知F是抛物线y2=2px(p>0)的焦点,P是抛物线上的一点,直线l:x=-
p
4
,以P为圆心,|PF|为半径的圆与直线l的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•青浦区二模)(文)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x0,0).若x0>2,试用x0表示线段AB中点的横坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(08年潍坊市质检) 已知直线l过抛物线y2=4x的焦点交抛物线于AB两点,则以弦AB为直径的圆与抛物线准线的位置关系是                         (    )

    A.相交           B.相切           C.相离           D.位置关系不确定

查看答案和解析>>

科目:高中数学 来源:2009年上海市静安、杨浦、青浦、宝山区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

(理)已知A、B是抛物线y2=4x上的相异两点.
(1)设过点A且斜率为-1的直线l1,与过点B且斜率为1的直线l2相交于点P(4,4),求直线AB的斜率;
(2)问题(1)的条件中出现了这样的几个要素:已知圆锥曲线Γ,过该圆锥曲线上的相异两点A、B所作的两条直线l1、l2相交于圆锥曲线Γ上一点;结论是关于直线AB的斜率的值.请你对问题(1)作适当推广,并给予解答;
(3)若线段AB(不平行于y轴)的垂直平分线与x轴相交于点Q(x,0).若x=5,试用线段AB中点的纵坐标表示线段AB的长度,并求出中点的纵坐标的取值范围.

查看答案和解析>>

同步练习册答案