精英家教网 > 高中数学 > 题目详情
(2012•武汉模拟)已知函数f(x)=
lnx
x
-1

(1)求函数f(x)的单调区间;
(2)设m>0,求函数f(x)在[m,2m]上的最大值;
(3)证明:对?n∈N*,不等式ln(
2+n
n
)<
2+n
n
恒成立.
分析:(1)确定函数的定义域,求导函数,由导数的正负明确的函数的单调区间;
(2)分类讨论,确定函数f(x)在[m,2m]上的单调性,从而可求函数的最大值;
(3)先确定函数在(0,+∞)上,恒有f(x)=
lnx
x
-1≤
1
e
-1
,即
lnx
x
1
e
,从而可得x∈(0,+∞),恒有lnx≤
1
e
x
,进而可得结论.
解答:解:(1)函数的定义域为(0,+∞)
求导函数,可得f′(x)=
1-lnx
x2

令f′(x)>0,x>0,可得0<x<e;令f′(x)<0,可得x>e;
∴函数f(x)的单调递增区间为(0,e),单调递减区间为(e,+∞);
(2)①当0<2m≤e,即0<m≤
e
2
时,由(1)知,函数f(x)在[m,2m]上单调递增,
∴f(x)max=f(2m)=
ln2m
2m
-1

②当m≥e时,由(1)知,函数f(x)在[m,2m]上单调递减,
∴f(x)max=f(m)=
lnm
m
-1

③当m<e<2m,即
e
2
<m<e
时,由(1)知,f(x)max=f(e)=
1
e
-1

(3)由(1)知,当x∈(0,+∞)时,f(x)max=f(e)=
1
e
-1

∴在(0,+∞)上,恒有f(x)=
lnx
x
-1≤
1
e
-1
,即
lnx
x
1
e

当且仅当x=e时,等号成立
∴?x∈(0,+∞),恒有lnx≤
1
e
x

2+n
n
>0
2+n
n
≠e

ln
2+n
n
1
e
×
2+n
n

ln(
2+n
n
)<
2+n
n
点评:本题考查导数知识的运用,考查函数的单调性,考查函数的最值,考查不等式的证明,解题的关键是确定函数的单调性,正确分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•武汉模拟)如图是一正方体被过棱的中点M、N,顶点A和N、顶点D、C1的两上截面截去两个角后所得的几何体,则该几何体的正视图为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)天气预报说,在今后的三天中,每一天下雨的概率均为40%.现采用随机模拟试验的方法估计这三天中恰有两天下雨的概率:先利用计算器产生0到9之间取整数值的随机数,用1,2,3,4表示下雨,用5,6,7,8,9,0表示不下雨;再以每三个随机数作为一组,代表这三天的下雨情况.经随机模拟试验产生了如下20组随机数:
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
据此估计,这三天中恰有两天下雨的概率近似为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)F1、F2是双曲线
x2
16
-
y2
20
=1
的焦点,点P在双曲线上,若点P到焦点F1的距离等于9,则点P到焦点F2的距离等于
17
17

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•武汉模拟)若复数z满足(2-i)z=1+i(i为虚数单位),则复数z在复平面内对应的点的坐标为
1
5
3
5
1
5
3
5

查看答案和解析>>

同步练习册答案