精英家教网 > 高中数学 > 题目详情
13.若一个长方体内接于表面积为4π的球,则这个长方体的表面积的最大值是8.

分析 设出长方体的三度,求出长方体的对角线的长就是确定直径,推出长方体的表面积的表达式,然后求出最大值.

解答 解:表面积为4π的球的半径为1.
设长方体的三度为:a,b,c,由题意可知a2+b2+c2=4,
长方体的表面积为:2ab+2ac+2bc≤2a2+2b2+2c2=8;
即a=b=c时取得最大值,也就是长方体为正方体时,表面积最大,最大为8.
故答案为:8.

点评 本题是中档题,考查长方体的外接球的知识,长方体的表面积的最大值的求法,基本不等式的应用,考查计算能力;注意利用基本不等式求最值时,正、定、等的条件的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序,若输入的x=3,则输出的所有x的值的和为(  )
A.243B.363C.729D.1092

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数y=2tan(2x+$\frac{π}{6}$)的最小正周期是(  )
A.B.C.πD.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则该三棱锥的外接球的表面积为(  )
A.$\frac{16}{3}π$B.$\frac{{4\sqrt{3}}}{3}π$C.$\frac{4}{3}π$D.$\frac{8}{3}π$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD为菱形,PA⊥面ABCD,E为PD的中点.
(1)求证:PB∥平面AEC;
(2)设AP=1,AD=2,∠ABC=60°,求点A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知某几何体的三视图如图,正(主)视图中的弧线是半圆,根据图中标出的尺寸,可得这个几何体的表面积是3π+4(单位:cm2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=(x-2)2+alnx.
(1)若a=-6,求f(x)的单调区间;
(2)若f(x)存在两个极值点x1,x2,且x1<x2,求证:$\frac{f({x}_{1})}{{x}_{2}}$≥2(1-e${\;}^{-\frac{1}{2}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.要完成下列3项抽样调查:
①从15瓶饮料中抽取5瓶进行食品卫生检查.
②某校报告厅有25排,每排有38个座位,有一次报告会恰好坐满了学生,报告会结束后,为了听取意见,需要抽取25名学生进行座谈.
③某中学共有240名教职工,其中一般教师180名,行政人员24名,后勤人员36名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.
较为合理的抽样方法是(  )
A.①简单随机抽样,②系统抽样,③分层抽样
B.①简单随机抽样,②分层抽样,③系统抽样
C.①系统抽样,②简单随机抽样,③分层抽样
D.①分层抽样,②系统抽样,③简单随机抽样

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若直线的参数方程为$\left\{\begin{array}{l}x=1+\sqrt{3}t\\ y=3-3t\end{array}\right.$(t为参数),则直线的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

同步练习册答案