精英家教网 > 高中数学 > 题目详情
1.若三棱锥S-ABC的底面是以AB为斜边的等腰直角三角形,AB=2,SA=SB=SC=2,则该三棱锥的外接球的表面积为(  )
A.$\frac{16}{3}π$B.$\frac{{4\sqrt{3}}}{3}π$C.$\frac{4}{3}π$D.$\frac{8}{3}π$

分析 说明P在底面上的射影是AB的中点,也是底面外接圆的圆心,求出球的半径,即可求出外接球的表面积.

解答 解:由题意,点P在底面上的射影D是AB的中点,是三角形ABC的外心,令球心为O,如图在直角三角形ODC中,
由于AD=1,PD=$\sqrt{4-1}$=$\sqrt{3}$,
则($\sqrt{3}$-R)2+12=R2
解得R=$\frac{2}{\sqrt{3}}$,则S=4πR2=$\frac{16π}{3}$
故选A.

点评 本题是基础题,考查球的内接体,球的表面积,考查计算能力,空间想象能力,转化思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)经过点($\sqrt{3}$,-2),且渐近线方程为y=±2x,则该双曲线的实轴长为(  )
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a=30.6,b=log2$\frac{2}{3}$,c=cos300°,则a,b,c的大小关系为(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某学校研究性学习小组对该校高二学生视力情况进行调查,在高二的全体1000名学生中随机抽取了100名学生的体检表,并得到如图的频率分布直方图:
(Ⅰ)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到表中数据,根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
年级名次
是否近视
1~50951~1000
近视4132
不近视918
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
附:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=x2-x+c,|x-a|<1,求证:|f(x)-f(a)|<2(|a|+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知A,B,C是球面上三点,且AB=6,BC=8,AC=10,球心O到平面ABC的距离等于该球半径的$\frac{1}{2}$,则此球的表面积为(  )
A.$\frac{100}{3}$πB.$\frac{200}{3}$πC.$\frac{400}{3}$πD.$\frac{400}{9}$π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若一个长方体内接于表面积为4π的球,则这个长方体的表面积的最大值是8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}的前n项和为Sn,对任意n∈N*,Sn=(-1)nan+$\frac{1}{{2}^{n}}$+2n-6,且(an+1-p)(an-p)<0恒成立,则实数p的取值范围是(  )
A.(-$\frac{7}{4}$,$\frac{23}{4}$)B.(-∞,$\frac{23}{4}$)C.(-$\frac{7}{4}$,6)D.(-2,$\frac{23}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=x2-2x+2,f1(x)=f(x),fn+1(x)=f(fn(x)),n∈N*,则f2016(x)在[1,2]上的最小值,最大值分别是(  )
A.0,1B.0,2C.1,2D.1,4

查看答案和解析>>

同步练习册答案