精英家教网 > 高中数学 > 题目详情
已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的一个焦点坐标为(1,0),且长轴长是短轴长的
2
倍.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设O为坐标原点,椭圆C与直线y=kx+1相交于两个不同的点A,B,线段AB的中点为P,若直线OP的斜率为-1,求△OAB的面积.
分析:(I)先根据题意得关于a,b,c的方程,进而结合椭圆中a,b,c的关系求得a,b,则椭圆方程可得.
(II)设A(0,1),B(x1,y1),P(x0,y0),联立
x2+2y2=2
y=kx+1
,将直线的方程代入椭圆的方程,消去y得到关于x的一元二次方程,再结合求根公式,利用弦长公式即可求得k值,从而解决问题.
解答:解:(Ⅰ)由题意得c=1 , a=
2
b
,(2分)
又a2-b2=1,所以b2=1,a2=2.(3分)
所以椭圆的方程为
x2
2
+y2=1
.(4分)
(Ⅱ)设A(0,1),B(x1,y1),P(x0,y0),
联立
x2+2y2=2
y=kx+1
消去y得(1+2k2)x2+4kx=0(*),(6分)
解得x=0或x=-
4k
1+2k2
,所以x1=-
4k
1+2k2

所以B(-
4k
1+2k2
1-2k2
1+2k2
)
P(-
2k
1+2k2
1
1+2k2
)
,(8分)
因为直线OP的斜率为-1,所以-
1
2k
=-1

解得k=
1
2
(满足(*)式判别式大于零).(10分)
O到直线l:y=
1
2
x+1
的距离为
2
5
,(11分)
|AB|=
x
2
1
+(y1-1)2
=
2
3
5
,(12分)
所以△OAB的面积为
1
2
×
2
3
5
×
2
5
=
2
3
.(13分)
点评:本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
1
2
,且经过点P(1,
3
2
)

(1)求椭圆C的方程;
(2)设F是椭圆C的左焦,判断以PF为直径的圆与以椭圆长轴为直径的圆的位置关系,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的短轴长为2
3
,右焦点F与抛物线y2=4x的焦点重合,O为坐标原点.
(1)求椭圆C的方程;
(2)设A、B是椭圆C上的不同两点,点D(-4,0),且满足
DA
DB
,若λ∈[
3
8
1
2
],求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
3
2
),且离心率e=
3
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点B(-1,0)能否作出直线l,使l与椭圆C交于M、N两点,且以MN为直径的圆经过坐标原点O.若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•房山区二模)已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的长轴长是4,离心率为
1
2

(Ⅰ)求椭圆方程;
(Ⅱ)设过点P(0,-2)的直线l交椭圆于M,N两点,且M,N不与椭圆的顶点重合,若以MN为直径的圆过椭圆C的右顶点A,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的短轴长为2,离心率为
2
2
,设过右焦点的直线l与椭圆C交于不同的两点A,B,过A,B作直线x=2的垂线AP,BQ,垂足分别为P,Q.记λ=
AP+BQ
PQ
,若直线l的斜率k≥
3
,则λ的取值范围为
 

查看答案和解析>>

同步练习册答案