精英家教网 > 高中数学 > 题目详情

给出问题:设是双曲线的焦点,点是双曲线上的动点,点到焦点的距离等于,求点的距离,某同学的解答如下:双曲线的实轴长为,由,得。试问该同学的解答是否正确?若正确,请说明依据,若不正确,请说明理由。


根本不可能为,而只能为


解析:

由定义,双曲线中,,∴,当在同一直线上时取得“=”号,由在双曲线的左右支上时,,同理,,因此,根本不可能为,而只能为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)若椭圆的方程是:
x2
a2
+
y2
b2
=1(a>b>0),它的左、右焦点依次为F1、F2,P是椭圆上异于长轴端点的任意一点.在此条件下我们可以提出这样一个问题:“设△PF1F2的过P角的外角平分线为l,自焦点F2引l的垂线,垂足为Q,试求Q点的轨迹方程?”
对该问题某同学给出了一个正确的求解,但部分解答过程因作业本受潮模糊了,我们在
精英家教网
这些模糊地方划了线,请你将它补充完整.
解:延长F2Q 交F1P的延长线于E,据题意,
E与F2关于l对称,所以|PE|=|PF2|.
所以|EF1|=|PF1|+|PE|=|PF1|+|PF2|=
 

在△EF1F2中,显然OQ是平行于EF1的中位线,
所以|OQ|=
1
2
|EF1|=
 

注意到P是椭圆上异于长轴端点的点,所以Q点的轨迹是
 

其方程是:
 

(2)如图2,双曲线的方程是:
x2
a2
-
y2
b2
=1(a,b>0),它的左、右焦点依次为F1、F2,P是双曲线上异于实轴端点的任意一点.请你试着提出与(1)类似的问题,并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•杨浦区二模)(理)设斜率为k1的直线L交椭圆C:
x2
2
+y2=1
于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
x2
a2
+
y2
b2
=1

(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线
x2
a2
-
y2
b2
=1
(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.

查看答案和解析>>

科目:高中数学 来源:同步题 题型:解答题

给出问题:设F1、F2是双曲线的焦点,点P是双曲线上的动点,点P到焦点F1的距离等于9,求点P到F2的距离,某同学的解答如下:双曲线的实轴长为8,由|PF1-PF2|=8即|9-PF2|=8,得PF2=1或PF2= 17.试问该同学的解答是否正确?若正确,请说明依据;若不正确,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2007年上海市杨浦区、静安区高考数学二模试卷(文理合卷)(解析版) 题型:解答题

(理)设斜率为k1的直线L交椭圆C:于A、B两点,点M为弦AB的中点,直线OM的斜率为k2(其中O为坐标原点,假设k1、k2都存在).
(1)求k1?k2的值.
(2)把上述椭圆C一般化为
(a>b>0),其它条件不变,试猜想k1与k2关系(不需要证明).请你给出在双曲线(a>0,b>0)中相类似的结论,并证明你的结论.
(3)分析(2)中的探究结果,并作出进一步概括,使上述结果都是你所概括命题的特例.
如果概括后的命题中的直线L过原点,P为概括后命题中曲线上一动点,借助直线L及动点P,请你提出一个有意义的数学问题,并予以解决.

查看答案和解析>>

同步练习册答案