精英家教网 > 高中数学 > 题目详情

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形的面积可无限接近圆的面积,并创立了“割圆术”,利用“割圆术”,刘徽得到了圆周率精确到小数点后两位的近似值3.14,这就是著名的“徽率”,利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为( )

(参考数据:

A. 12 B. 24 C. 48 D. 96

【答案】C

【解析】1次执行循环体后,S=×6×sin60=,不满足退出循环的条件,则n=12,

2次执行循环体后,S=×12×sin30=3,不满足退出循环的条件,则n=24,

3次执行循环体后,S=×24×sin153.1056,不满足退出循环的条件,则n=48,

4次执行循环体后,S=×48×sin7.5°3.132,满足退出循环的条件,

故输出的n值为48,

本题选择C选项.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴的正半轴为极轴,与直角坐标系取相同的单位长度建立极坐标系,曲线的极坐标方程为.

(1)化曲线的方程为普通方程,并说明它们分别表示什么曲线;

(2)设曲线轴的一个交点的坐标为,经过点作斜率为1的直线, 交曲线两点,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经国务院批复同意,重庆成功入围国家中心城市,某校学生社团针对“重庆的发展环境”对20名学生进行问卷调查打分(满分100分),得到如图所示茎叶图:

(Ⅰ)计算女生打分的平均分,并用茎叶图的数字特征评价男生、女生打分谁更分散;

(Ⅱ)如图按照打分区间绘制的直方图中,求最高矩形的高

(Ⅲ)从打分在70分以下(不含70分)的同学中抽取3人,求有女生被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若 ,且存在区间,使在区间上具有相同的单调性,求的取值范围;

(2)若 对任意恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数的单调区间和极值;

(2)是否存在实数,使得函数上的最小值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(二季)亮点颇多,十场比赛每场都有一首特别设计的开场诗词,在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另确定的两首诗词排在后六场,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻且均不排在最后,则后六场的排法有( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2016世界特色魅力城市强新鲜出炉,包括黄山市在内的个中国城市入选. 美丽的黄山风景和人文景观迎来众多宾客. 现在很多人喜欢自助游,某调查机构为了了解“自助游”是否与性别有关,在黄山旅游节期间,随机抽取了人,得如下所示的列联表:

赞成“自助游”

不赞成“自助游”

合计

男性

女性

合计

(1)若在这人中,按性别分层抽取一个容量为的样本,女性应抽人,请将上面的列联表补充完整(在答题卡上直接填写结果,不需要写求解过程),并据此资料能否在犯错误的概率不超过前提下,认为赞成“自助游”是与性别有关系?

(2)若以抽取样本的频率为概率,从旅游节游客中随机抽取人赠送精美纪念品,记这人中赞成自助游人数为的分布列和数学期望.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的一个焦点与抛物线的焦点重合,且点到直线的距离为 的公共弦长为.

(1)求椭圆的方程及点的坐标;

(2)过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(Ⅰ)若函数为定义域上的单调函数,求实数的取值范围;

(Ⅱ)当时,函数的两个极值点为 ,且.证明: .

查看答案和解析>>

同步练习册答案