精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=cos2x-(sinx-cosx)2+1;
(1)求f(x)的最小正周期;
(2)求f(x)在区间$[{\frac{π}{2},π}]$的最大值与最小值.

分析 (1)利用二倍角和两角和与差以及辅助角公式基本公式将函数化为y=Asin(ωx+φ)的形式,再利用周期公式求函数的最小正周期;
(2)x∈$[{\frac{π}{2},π}]$上时,求出内层函数的取值范围,结合三角函数的图象和性质,求出f(x)的最大值和最小值即可.

解答 解:函数f(x)=cos2x-(sinx-cosx)2+1;
化简可得:f(x)=cos2x+2sinxcosx=sin2x+cos2x=$\sqrt{2}$sin(2x+$\frac{π}{4}$)
(1)∴f(x)的最小正周期T=$\frac{2π}{2}=π$.
(2)由x∈$[{\frac{π}{2},π}]$上时,
可得:2x+$\frac{π}{4}$∈[$\frac{5π}{4}$,$\frac{9π}{4}$].
结合三角函数的图象和性质,可知:当2x+$\frac{π}{4}$=$\frac{3π}{2}$时,f(x)取得最小值为$-\sqrt{2}$.
当2x+$\frac{π}{4}$=$\frac{9π}{4}$时,f(x)取得最大值为$\sqrt{2}×\frac{\sqrt{2}}{2}$=1.
故得f(x)在区间$[{\frac{π}{2},π}]$的最大值为1,最小值为$-\sqrt{2}$.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用三角函数公式将函数进行化简是解决本题的关键.属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.用反证法证明命题“三角形的内角中至少有一个不大于60°”时,假设命题的结论不成立的正确叙述是②(填序号).
①假设三个角都不大于60°;         ②假设三个角都大于60°;
③假设三个角至多有一个大于60°;    ④假设三个角至多有两个大于60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知f(x)=ln($\frac{1+x}{1-x}$),若∨x∈[0,1),f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数$f(n)=\left\{{\begin{array}{l}{{n^2},n为奇数}\\{-{n^2},n为偶数}\end{array}}\right.$,且an=f(n)+f(n+1),则a1+a2+a3+…+a2014=(  )
A.-2013B.-2014C.2013D.2014

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.根据如图所示的伪代码,当输入a,b分别为3,5时,最后输出的m的值是5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a>0且a≠1,x∈(0,+∞),命题p:若a>1且x>1,则logax>0,在命题p、p的逆命题、p的否命题、p的逆否命题、¬p这5个命题中,真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的首项a1=3,an+1=2an+1(n∈N*).
(Ⅰ)写出数列{an}的前5项,并归纳猜想{an}的通项公式;
(Ⅱ)用数学归纳法证明(Ⅰ)中所猜想的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在正方体ABCD-A1B1C1D1中,点E1、F1分别是A1B1、C1D1的四等分点,求BE1与DF1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.过抛物线y2=2px(p>0)的焦点F的直线与双曲线x2-$\frac{{y}^{2}}{3}$=1的一条渐进线平行,并交抛物线于A、B两点,若|AF|>|BF|,且|AF|=2,则抛物线的方程为y2=2x.

查看答案和解析>>

同步练习册答案