精英家教网 > 高中数学 > 题目详情
证明:函数f(x)=
x
x+2
在区间(0,+∞)上是增函数.
考点:函数单调性的判断与证明
专题:函数的性质及应用
分析:设?0<x1<x2,则f(x1)-f(x2)<0,从而证出函数的单调性.
解答: 证明:设?0<x1<x2
则f(x1)-f(x2
=
x1
x1+2
-
x2
x2+2

=
2(x1-x2)
(x1+2)(x2+2)

∵0<x1<x2
∴x1-x2<0,x1+2>0,x2+2>0,
∴f(x1)<f(x2),
∴函数f(x)=
x
x+2
在区间(0,+∞)上是增函数.
点评:本题考查了函数的单调性,导数的应用,是一道基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,a2=5,a6=13,{bn}为等比数列,b2=a4,bn+1=3bn
(1)求通项公式an,bn
(2)求{an•bn}前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,A(2,-1),B(4,3),C(3,-2),求:
(1)BC边上的高所在直线方程;
(2)AB边中垂线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正实数x,y满足x+y+2=4xy,若对任意满足条件的x,y都有(x+y)2+1-m(x+y)≥0恒成立,则实数m的取值范围为(  )
A、(-∞,
5
2
]
B、[
5
2
,+∞)
C、(-∞,
3
2
]
D、[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

设等差数列{an}的前n项和为Sn,若S3=12,S6=42,则a10+a11+a12=(  )
A、156B、102
C、66D、48

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正四面体ABCD的各棱长都等于2,且A、B、C、D都在同一球面上,则这个球的表面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z1,z2在复平面内的对应点关于一、三象限的角平分线轴对称,z1=1+2i,则z1z2=(  )
A、4+5iB、4iC、5iD、5

查看答案和解析>>

科目:高中数学 来源: 题型:

直线l过(3,2)、(0,0),求直线l的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x,y满足
x+y≥1
x-y≥0
2x-y-2≥0
,则目标函数z=3x-y的最小值为
 

查看答案和解析>>

同步练习册答案