分析 由题意可得 2sinα•$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{3}}{2}$,α是第一象限的角,求得sin2α 的值,可得sinα的值.
解答 解:sin2α=2sinα•cosα=2sinα•$\sqrt{{1-sin}^{2}α}$=$\frac{\sqrt{3}}{2}$,α是第一象限的角,
求得sin2α=$\frac{3}{4}$,或sin2α=$\frac{1}{4}$.
则sinα=$\frac{\sqrt{3}}{2}$,或sinα=$\frac{1}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$或$\frac{1}{2}$.
点评 本题主要考查二倍角的正弦公式、同角三角函数的基本关系,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{15}{2}$ | B. | $\frac{\sqrt{15}}{2}$ | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}}{16}$ | B. | $\frac{\sqrt{3}}{16}$ | C. | $\frac{\sqrt{2}}{32}$ | D. | $\frac{\sqrt{3}}{32}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com