(满分12分)已知点Pn(an,bn)满足an+1=an·bn+1,bn+1= (n∈N*)且点P1的坐标为(1,-1).(1)求过点P1,P2的直线l的方程;
(2)试用数学归纳法证明:对于n∈N*,点Pn都在(1)中的直线l上.
(1)直线l的方程为2x+y=1. (2)见解析。
解析试题分析:(1)由P1的坐标为(1,-1)知a1=1,b1=-1.
∴b2==. a2=a1·b2=.
∴点P2的坐标为(,)
∴直线l的方程为2x+y=1. …………….3分
(2)①当n=1时,2a1+b1=2×1+(-1)=1成立.…………….4分
②假设n=k(k∈N*,k≥1)时,2ak+bk=1成立,…………….6分
则2ak+1+bk+1=2ak·bk+1+bk+1= (2ak+1)…………….8分
===1,
∴当n=k+1时,命题也成立. ……………. 10分
由①②知,对n∈N*,都有2an+bn=1,
即点Pn在直线l上. …………….12分
考点:本题主要考查数列的递推公式,数学归纳法,直线方程。
点评:本题将数列问题、直线方程、数学归纳法有机结合在一起,不偏不怪,是一道不错的题目。
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
已知数列中,,,且.
(1)设,求是的通项公式;
(2)求数列的通项公式;
(3)若是与的等差中项,求的值,并证明:对任意的,是与的等差中项.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知等差数列,是的前项和,且.
(1)求的通项公式;
(2)设,是的前n项和,是否存在正数,对任意正整数,不等式恒成立?若存在,求的取值范围;若不存在,说明理由.
(3)判断方程是否有解,说明理由;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com