【题目】在四棱锥中,侧面底面,底面为直角梯形,∥,,,,,为的中点,为的中点。
(1)求证:∥平面;
(2)求二面角的余弦值。
【答案】(1)见证明;(2)
【解析】
(1)利用面外线与面内线平行证明面外线平行于平面。
(2)建立空间直角坐标系,利用两个半平面的法向量的夹角余弦值,来求二面角的平面角的余弦值,或用几何法找到二面角的平面角来求余弦值。
(1)连接交于,并连接,,
,,为中点,,且,
四边形为平行四边形,
为中点,又为中点,,
平面,平面,平面.
(2)〖解法1〗(向量法)连接,由E为AD的中点及,
得则,∵侧面底面,且交于,
∴面,
如图所示,以E为原点,EA、EB、EP分别为
x、y、z轴建立空间直角坐标系,
则,,,C.
∵为的中点,∴F
∴,
设平面EBF法向量为,则,
取,
平面EBA法向量可取:,
设二面角F-BE-A的大小为,显然为钝角,
∴,
∴二面角F-BE-A的余弦值为
(2)〖解法2〗(几何法1)连接,
由E为AD的中点及,
得∵,
取中点,连,,,
侧面底面,且交于,,
∴面
∵ 面 面
∴
∵为的中点,为的中点
,
∴
∴∠MEA为二面角F-BE-A的平面角
在中,,
在中,由余弦定理得
∴在中,由余弦定理得cos∠MEA,
所以二面角F-BE-A的余弦值为.
(2)〖解法3〗(几何法2)连接,由E为AD的中点及,
得侧面底面,∴面,
∵,
连交于点,则为中点,连,,,
∵为的中点,∴,面,
又,∴ ∴
∴∠FNQ为二面角F-BE-A的平面角的补角
在中,,
由勾股定理得
∴cos∠FNQ,
所以二面角F-BE-A的余弦值为.
科目:高中数学 来源: 题型:
【题目】焦距为的椭圆(),如果满足“”,则称此椭圆为“等差椭圆”.
(1)如果椭圆()是“等差椭圆”,求的值;
(2)如果椭圆 ()是“等差椭圆”,过作直线与此“等差椭圆”只有一个公共点,求此直线的斜率;
(3)椭圆()是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;
(4)对于焦距为12的“等差椭圆”,点为椭圆短轴的上顶点,为椭圆上异于点的任一点,为关于原点的对称点(也异于),直线分别与轴交于两点,判断以线段为直径的圆是否过定点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(2ωx+)+sin(2ωx-)+2cos2ωx,其中ω>0,且函数f(x)的最小正周期为π
(1)求ω的值;
(2)求f(x)的单调增区间
(3)若函数g(x)=f(x)-a在区间[-,]上有两个零点,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】高中生在被问及“家,朋友聚集的地方,个人空间”三个场所中“感到最幸福的场所在哪里?”这个问题时,从中国某城市的高中生中,随机抽取了55人,从美国某城市的高中生中随机抽取了45人进行答题.中国高中生答题情况是:选择家的占、朋友聚集的地方占、个人空间占.美国高中生答题情况是:朋友聚集的地方占、家占、个人空间占.如下表:
在家里最幸福 | 在其它场所幸福 | 合计 | |
中国高中生 | |||
美国高中生 | |||
合计 |
(Ⅰ)请将列联表补充完整;试判断能否有的把握认为“恋家”与否与国别有关;
(Ⅱ)从被调查的不“恋家”的美国学生中,用分层抽样的方法选出4人接受进一步调查,再从4人中随机抽取2人到中国交流学习,求2人中含有在“个人空间”感到幸福的学生的概率.
附:,其中.
0.050 | 0.025 | 0.010 | 0.001 | |
3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[选修4-4:坐标系与参数方程]
在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)写出曲线的普通方程和曲线的直角坐标方程;
(2)已知点是曲线上的动点,求点到曲线的最小距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某医疗器械公司在全国共有个销售点,总公司每年会根据每个销售点的年销量进行评价分析.规定每个销售点的年销售任务为一万四千台器械.根据这个销售点的年销量绘制出如下的频率分布直方图.
(1)完成年销售任务的销售点有多少个?
(2)若用分层抽样的方法从这个销售点中抽取容量为的样本,求该五组,,,,,(单位:千台)中每组分别应抽取的销售点数量.
(3)在(2)的条件下,从前两组,中的销售点随机选取个,记这个销售点在中的个数为,求的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为推动文明城市创建,提升城市整体形象,2018年12月30日盐城市人民政府出台了《盐城市停车管理办法》,2019年3月1日起施行.这项工作有利于市民养成良好的停车习惯,帮助他们树立绿色出行的意识,受到了广大市民的一致好评.现从某单位随机抽取80名职工,统计了他们一周内路边停车的时间(单位:小时),整理得到数据分组及频率分布直方图如下:
组号 | 分组 | 频数 |
1 | 6 | |
2 | 8 | |
3 | 22 | |
4 | 28 | |
5 | 12 | |
6 | 4 |
(1)从该单位随机选取一名职工,试计算这名职工一周内路边停车的时间少于8小时的频率;
(2)求频率分布直方图中的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两个焦点,,且椭圆过点,,且是椭圆上位于第一象限的点,且的面积.
(1)求点的坐标;
(2)过点的直线与椭圆相交于点,,直线,与轴相交于,两点,点,则是否为定值,如果是定值,求出这个定值,如果不是请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com