精英家教网 > 高中数学 > 题目详情
如图,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=2,CE∥AF,AC⊥CE,
(I)求证:CM∥平面BDF;
(II)求异面直线CM与FD所成角的余弦值的大小;
(III)求二面角A﹣DF﹣B的大小.
解:(I)证明:因为面ABCD⊥面ACEF,面ABCD∩面ACEF=AC,且AC⊥CE,
∴CE⊥面ABCD.
所以CD、CB、CE两两垂直.可建立如图空间直角坐标系C﹣xyz.
则(2,0,0),A(2,2,0),B(0,2,0),F(2,2,),O(1,1,0)
,可求得M(
=(),).
所以
∴CM∥OF
∵OF平面BDF
∴CM∥平面BDF 。
(II)因为=(),),
所以cos<>=
异面直线CM与FD所成角的余弦值的大小为
(III)因为CD⊥平面ADF,所以平面ADF的法向量=(2,0,0).
设平面BDF的法向量为=(x,y,1)

所以法向量=(﹣,1)
所以所以<=
由图可知二面角A﹣DF﹣B为锐角,所以二面角A﹣DF﹣B大小为
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1,M是线段EF的中点.
(Ⅰ)求证AM∥平面BDE;
(Ⅱ)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD的边长为1,过正方形中心O的直线MN分别交正方形的边AB,CD于M,N,则当
MN
BN
最小时,CN=
5
-1
2
5
-1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和梯形ACEF所在平面互相垂直,AB=2,AF=
2
,CE=2
2
,CE∥AF,AC⊥CE,
ME
=2
FM

(I)求证:CM∥平面BDF;
(II)求异面直线CM与FD所成角的余弦值的大小;
(III)求二面角A-DF-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=
2
,AF=1

(1)求二面角A-DF-B的大小;
(2)在线段AC上找一点P,使PF与AD所成的角为60°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳二模)如图,已知正方形ABCD在水平面上的正投影(投影线垂直于投影面)是四边形A′B′C′D′,其中A与A'重合,且BB′<DD′<CC′.
(1)证明AD′∥平面BB′C′C,并指出四边形AB′C′D′的形状;
(2)如果四边形中AB′C′D′中,AD′=
2
,AB′=
5
,正方形的边长为
6
,求平面ABCD与平面AB′C′D′所成的锐二面角θ的余弦值.

查看答案和解析>>

同步练习册答案