精英家教网 > 高中数学 > 题目详情

已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是(  )

A.2πR2                B.πR2

C.πR2                         D.πR2

解析:选B.如图所示,设圆柱底面半径为r,则其高为3R-3r,全面积S=2πr2+2πr(3R-3r)=6πRr-4πr2=-4π(rR)2πR2,故当rR时全面积有最大值πR2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆锥的底面半径为R,高为3R,在它的所有内接圆柱中,全面积的最大值是(  )
A、2πR2
B、
9
4
πR2
C、
8
3
πR2
D、
3
2
πr2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的底面半径为1,且它的侧面展开图是一个半圆,则这个圆锥的体积为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的底面半径为r,高为h,正方体ABCD-A′B′C′D′内接于圆锥,求这个正方体的棱长.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的底面半径为3,母线长为12,那么圆锥侧面展开图所成扇形的圆心角为(  )
A、180°B、120°C、90°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的底面半径为3,体积是12π,则圆锥侧面积等于
 

查看答案和解析>>

同步练习册答案