精英家教网 > 高中数学 > 题目详情

已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为(  )

(A)x2+y2=2 (B)x2+y2=4

(C)x2+y2=2(x≠±2) (D)x2+y2=4(x≠±2)

 

D

【解析】P(x,y),|PM|2+|PN|2=|MN|2,

所以x2+y2=4(x≠±2).

【误区警示】本题易误选B.错误的根本原因是忽视了曲线与方程的关系,从而导致漏掉了x≠±2.

 

练习册系列答案
相关习题

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十五第八章第六节练习卷(解析版) 题型:解答题

已知双曲线的中心在原点,焦点F1,F2在坐标轴上,离心率为,且过点P(4,-).

(1)求双曲线的方程.

(2)若点M(3,m)在双曲线上,求证:·=0.

(3)求△F1MF2的面积.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十三第八章第四节练习卷(解析版) 题型:解答题

已知☉O:x2+y2=1和定点A(2,1),由☉O外一点P(a,b)向☉O引切线PQ,切点为Q,且满足|PQ|=|PA|.

(1)求实数a,b间满足的等量关系.

(2)求线段PQ长的最小值.

(3)若以P为圆心所作的☉P与☉O有公共点,试求半径取最小值时☉P的方程.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:解答题

已知椭圆的中心为坐标原点,短轴长为2,一条准线的方程为l:x=2.

(1)求椭圆的标准方程.

(2)O为坐标原点,F是椭圆的右焦点,M是直线l上的动点,过点FOM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值.

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十七第八章第八节练习卷(解析版) 题型:选择题

已知动点P(x,y),lgy,lg|x|,lg成等差数列,则点P的轨迹图象是(  )

 

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:填空题

经过直线x+2y-3=02x-y-1=0的交点且和点(0,1)的距离等于1的直线方程为   .

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业五十一第八章第二节练习卷(解析版) 题型:选择题

A(1,1)到直线xcosθ+ysinθ-2=0的距离的最大值是(  )

(A)2 (B)2-

(C)2+ (D)4

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十第三章第四节练习卷(解析版) 题型:选择题

如图,单摆从某点开始来回摆动,离开平衡位置O的距离Scm和时间ts的函数关系式为S=6sin(2πt+),那么单摆来回摆动一次所需的时间为(  )

(A)2πs (B)πs (C)0.5s (D)1s

 

查看答案和解析>>

科目:高中数学 来源:2014年高考数学全程总复习课时提升作业二十八第四章第四节练习卷(解析版) 题型:选择题

在平行四边形ABCD,EAD的中点,BEAC相交于点F,=m+n(m,nR),的值为(  )

(A)(B)-(C)2(D)-2

 

查看答案和解析>>

同步练习册答案