精英家教网 > 高中数学 > 题目详情

在正方体ABCD-A1B1C1D1的各个顶点与各棱的中点共20个点中,任取2点连成直线,在这些直线中任取一条,它与对角线BD1垂直的概率为________.


分析:如图,易证明BD1⊥正六边形EFGHIJ,此时在正六边形上有条直线与直线BD1垂直.与直线BD1垂直的平面还有平面ACB、平面NPQ、平面KLM、平面A1C1B,共有直线条,而所有的直线共有条,从而求得任取一条,它与对角线BD1垂直的概率.
解答:如图,E,F,G,H,I,J,K,L,M,N,P,Q分别为相应棱上的中点,容易证明BD1⊥正六边形EFGHIJ,
此时在正六边形上有条直线与直线BD1垂直.
与直线BD1垂直的平面还有平面ACB、平面NPQ、平面KLM、平面A1C1B,共有直线条.
正方体ABCD-A1B1C1D1的各个顶点与各棱的中点共20个点,
任取2点连成直线数为条直线(每条棱上如直线AE,ED,AD其实为一条),
故对角线BD1垂直的概率为
故答案为
点评:本题考查古典概型及其概率计算公式的应用,体现了分类讨论的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交AA′于E,交CC′于F,则
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E在底面ABCD内的投影一定是正方形;
④平面BFD′E有可能垂直于平面BB′D.
以上结论正确的为
①③④
.(写出所有正确结论的编号)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E为D′C′的中点,则二面角E-AB-C的大小为
45°
45°

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A′B′C′D′中,E,F分别是AB′,BC′的中点. 
(1)若M为BB′的中点,证明:平面EMF∥平面ABCD.
(2)求异面直线EF与AD′所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图在正方体ABCD-A  1B1C1D1中,O是底面ABCD的中心,B1H⊥D1O,H为垂足,则B1H与平面AD1C的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A′B′C′D′中,过对角线BD′的一个平面交棱AA′于E,交棱CC′于F,则:
①四边形BFD′E一定是平行四边形;
②四边形BFD′E有可能是正方形;
③四边形BFD′E有可能是菱形;
④四边形BFD′E有可能垂直于平面BB′D.
其中所有正确结论的序号是
 

查看答案和解析>>

同步练习册答案