精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ex,g(x)=lnx+2.
(I)当x>0时,求证:f(x)>g(x);
(Ⅱ)当x≥1时,若不等式f(x)≥2ax-a≥g(x)-$\frac{3}{2}$恒成立,求a的取值范围.

分析 (1)对p(x)求导,再令h(x)=p′(x)=0,令x=m(0<m<1),h(x)=0,即em=$\frac{1}{m}$,-m=lnm,再讨论0<x<m,x>m,m(x)的单调性,得到p(x)>p(m),由基本不等式证明p(m)>0即可;
(2)运用参数分离可得x≥1时,a≤$\frac{{e}^{x}}{2x-1}$恒成立,且a≥$\frac{lnx+\frac{1}{2}}{2x-1}$恒成立,分别求得右边函数的最大值和最小值,由不等式恒成立思想即可得到a的范围.

解答 (1)证明:令p(x)=f(x)-g(x)=ex-lnx-2,
∵p′(x)=ex-$\frac{1}{x}$,
令h(x)=p′(x),则h′(x)=ex+$\frac{1}{{x}^{2}}$>0,
∴h(x)在(0,+∞)上为增函数,
令x=m(0<m<1),h(x)=0,即em=$\frac{1}{m}$,即-m=lnm,
当0<x<m时,h(x)<0,则p(x)在(0,m)上递减,
p(x)>p(m)=em-2-lnm=$\frac{1}{m}$+m-2>2-2=0,
即p(x)>0;
当x>m时,h(x)>0,则p(x)在(m,+∞)上递增,
p(x)>p(m)=$\frac{1}{m}$+m-2>2-2=0,
即f(x)>g(x).
(2)解:当x≥1时,若不等式f(x)≥2ax-a≥g(x)-$\frac{3}{2}$恒成立,
即为a≤$\frac{{e}^{x}}{2x-1}$恒成立,或a≥$\frac{lnx+\frac{1}{2}}{2x-1}$恒成立
令m(x)=$\frac{{e}^{x}}{2x-1}$(x≥1),m′(x)=$\frac{{e}^{x}(2x-3)}{{(2x-1)}^{2}}$,
当1≤x<$\frac{3}{2}$时,m′(x)<0,m(x)递减;
当x>$\frac{3}{2}$时,m′(x)>0,m(x)递增.
则x=$\frac{3}{2}$处m(x)取得极小值,也为最小值,且为$\frac{1}{2}$${e}^{\frac{3}{2}}$,
则a≤$\frac{1}{2}$${e}^{\frac{3}{2}}$,①
令n(x)=$\frac{lnx+\frac{1}{2}}{2x-1}$(x≥1),
n′(x)=$\frac{1-\frac{1}{x}-2lnx}{{(2x-1)}^{2}}$,
由1-$\frac{1}{x}$-2lnx的导数为$\frac{1}{{x}^{2}}$-$\frac{2}{x}$=$\frac{1-2x}{{x}^{2}}$<0(x≥1),
即有1-$\frac{1}{x}$-2lnx≤0,
即为n′(x)≤0,n(x)在x≥1上递减,
则n(x)≤n(1)=$\frac{1}{2}$,
则a≥$\frac{1}{2}$②
由①②可得$\frac{1}{2}$≤a≤$\frac{1}{2}$${e}^{\frac{3}{2}}$.

点评 本题考查导数的应用:判断函数的单调性,以及构造函数的思想,考查函数的单调性和应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知O为坐标原点,点A(1,0),若点M(x,y)为平面区域$\left\{{\begin{array}{l}{x+y≥2}\\{x≤1}\\{y≤2}\end{array}}\right.$内的一个动点,则$|{\overrightarrow{OA}+\overrightarrow{OM}}|$的最小值为(  )
A.3B.$\sqrt{5}$C.$\frac{{3\sqrt{2}}}{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,矩形ABCD中AB=2,BC=$\frac{{2\sqrt{3}}}{3}$,M,N分别为AB,CD中点,BD与MN交于O,现将矩形沿MN折起,使得二面角A-MN-B的大小为$\frac{π}{3}$,则折起后cos∠DOB为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$\frac{1}{8}$D.$-\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四边形ABCD内接于⊙O,AC和BD相交于点E,BC=CD.
(Ⅰ)求证:DC2=CE•CA;
(Ⅱ)若DC=3,AE=8,求DE•BE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.在极坐标系中,过点$(1,\;\frac{π}{2})$且平行于极轴的直线方程是(  )
A.ρ=1B.ρsinθ=1C.ρcosθ=1D.ρ=2sinθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.若函数y=x3+bx2+cx在区间(-∞,0)及[2,+∞)是增函数,在(0,2)是减函数,求此函数在[-1,4]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.以直角坐标系中的原点O为极点,x轴正半轴为极轴的极坐标系中,已知曲线的极坐标方程为ρ=$\frac{2}{1-sinθ}$.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)过极点O作直线l交曲线于点P,Q,若|OP|=3|OQ|,求直线l的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.
(1)证明:AE2=AD•AB.
(2)若AE=4,CB=6,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ.
(1)求曲线C的参数方程;
(2)当α=$\frac{π}{4}$时,求直线l与曲线C交点的极坐标.

查看答案和解析>>

同步练习册答案