分析 (1)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ.把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2代入可得:曲线C的直角坐标方程.利用cos2φ+sin2φ=1即可标准曲线C的直角坐标方程化为参数方程.
(2)当α=$\frac{π}{4}$时,直线l的方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,化成普通方程为y=x+2.与圆的方程联立解出,进而化为极坐标.
解答 解:(1)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ.
把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2代入可得:曲线C的直角坐标方程为x2+y2=2y-2x,
标准方程为(x+1)2+(y-1)2=2.
曲线C的直角坐标方程化为参数方程为$\left\{\begin{array}{l}{x=-1+\sqrt{2}cosφ}\\{y=1+\sqrt{2}sinφ}\end{array}\right.$(φ为参数).
(2)当α=$\frac{π}{4}$时,直线l的方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$
化成普通方程为y=x+2.
联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2y-2x}\\{y=x+2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$.
利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2可得:直线l与曲线C交点的极坐标分别为(2,$\frac{π}{2}$),(2,π).
点评 本题考查了极坐标与直角坐标方程的互化、圆的方程的应用、曲线的交点,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,+∞) | B. | (-∞,2) | C. | (-1,2) | D. | [-1,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com