精英家教网 > 高中数学 > 题目详情
8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ.
(1)求曲线C的参数方程;
(2)当α=$\frac{π}{4}$时,求直线l与曲线C交点的极坐标.

分析 (1)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ.把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2代入可得:曲线C的直角坐标方程.利用cos2φ+sin2φ=1即可标准曲线C的直角坐标方程化为参数方程.
(2)当α=$\frac{π}{4}$时,直线l的方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$,化成普通方程为y=x+2.与圆的方程联立解出,进而化为极坐标.

解答 解:(1)由ρ=2sinθ-2cosθ,可得ρ2=2ρsinθ-2ρcosθ.
把$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2代入可得:曲线C的直角坐标方程为x2+y2=2y-2x,
标准方程为(x+1)2+(y-1)2=2.
曲线C的直角坐标方程化为参数方程为$\left\{\begin{array}{l}{x=-1+\sqrt{2}cosφ}\\{y=1+\sqrt{2}sinφ}\end{array}\right.$(φ为参数).
(2)当α=$\frac{π}{4}$时,直线l的方程为$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$
化成普通方程为y=x+2.

联立$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}=2y-2x}\\{y=x+2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=2}\end{array}\right.$,或$\left\{\begin{array}{l}{x=-2}\\{y=0}\end{array}\right.$.
利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$,ρ2=x2+y2可得:直线l与曲线C交点的极坐标分别为(2,$\frac{π}{2}$),(2,π).

点评 本题考查了极坐标与直角坐标方程的互化、圆的方程的应用、曲线的交点,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=ex,g(x)=lnx+2.
(I)当x>0时,求证:f(x)>g(x);
(Ⅱ)当x≥1时,若不等式f(x)≥2ax-a≥g(x)-$\frac{3}{2}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,直线PB与⊙O交于A,B两点,OD⊥AB于点D,PC是⊙O的切线,切点为C.
(1)求证:PC2+AD2=PD2
(2)若BC是⊙O的直径,BC=3BD=3,试求线段BP的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,PD=AD=1,AB=2,求二面角P-AC-D的平面角的正切.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知a∈R,函数f(x)=log2($\frac{1}{x}$+a).
(1)当a=5时,解不等式f(x)>0;
(2)若关于x的方程f(x)-log2[(a-4)x+2a-5]=0有且只有一解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.如图在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|x2-3x-4<0},B={x|(x-m)[x-(m+2)]>0},若A∪B=R,则实数m的取值范围是(  )
A.(-1,+∞)B.(-∞,2)C.(-1,2)D.[-1,2]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知复数z=3+i(i为虚数单位),则$\frac{z}{1+i}$的模为(  )
A.2$\sqrt{2}$B.3C.$\sqrt{5}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知F1,F2分别是双曲线x2-$\frac{y^2}{a^2}$=1(a>0)的两个焦点,O为坐标原点,圆O是以F1,F2为直径的圆,直线l:y=$\sqrt{7}$x-4与圆O相交,则实数a的取值范围是(  )
A.(0,1)B.(0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案