精英家教网 > 高中数学 > 题目详情
17.已知复数z=3+i(i为虚数单位),则$\frac{z}{1+i}$的模为(  )
A.2$\sqrt{2}$B.3C.$\sqrt{5}$D.5

分析 求出复数的模,利用复数的模的运算法则化简求解即可.

解答 解:复数z=3+i(i为虚数单位),可得|z|=$\sqrt{{3}^{2}+{1}^{2}}$=$\sqrt{10}$,
则|$\frac{z}{1+i}$|=$\frac{|z|}{\sqrt{{1}^{2}+{1}^{2}}}$=$\sqrt{5}$.
故选:C.

点评 本题考查复数模的求法,运算法则的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.如图,E为⊙O上一点,点A在直径BD的延长线上,过点B作⊙O的切线交AE的延长线于点C,CE=CB.
(1)证明:AE2=AD•AB.
(2)若AE=4,CB=6,求⊙O的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知直线l的参数方程为$\left\{\begin{array}{l}{x=-2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ.
(1)求曲线C的参数方程;
(2)当α=$\frac{π}{4}$时,求直线l与曲线C交点的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若抛物线y2=2px(p>0)的焦点坐标为(1,0),则准线方程为(  )
A.x=1B.x=-1C.y=1D.y=-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某大学的一个社会实践调查小组,在对大学生的良好“光盘习惯”的调查中,随机发放了120份问卷.对收回的100份有效问卷进行统计,得到如下2×2列联表:
做不到光盘能做到光盘合计
451055
301545
合计7525100
(1)若在犯错误的概率不超过P的前提下认为良好“光盘习惯”与性别有关,那么根据临界值最精确的P的值应为多少?请说明理由;
(2)现按女生是否做到光盘进行分层,从45份女生问卷中抽取了6份问卷,若从这6份问卷中随机抽取2份,求两份问卷结果都是能做到光盘的概率.
附:独立性检验统计量K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
独立性检验临界表:
P(K2≥k00.250.150.100.050.025
K01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知各项互异的等比数列{an}中,a1=2,其前n项和为Sn,且a4+S4,a5+S5,a6+S6成等差数列,则S5=(  )
A.4B.7C.5D.$\frac{31}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知f(x)=cos2(ωx+φ)-$\frac{1}{2}$(ω>0,0<φ<$\frac{π}{2}$)的最小正周期为π,且f($\frac{π}{8}$)=$\frac{1}{4}$.
(1)求ω和φ的值;
(2)若函数f(x)-m=0在区间[$\frac{π}{24}$,$\frac{13π}{24}$]上有解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1=a,直线B1C与平面ABC成30°角.
(1)求证:平面B1AC⊥平面ABB1A1
(2)求二面角B-B1C-A的正切值;
(3)求直线A1C与平面B1AC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知复数z=$\frac{1}{{1+a{i^3}}}$(a∈R且a≠0,i为虚数单位),则z的共轭复数为(  )
A.$\frac{1}{1+ai}$B.$\frac{1+ai}{{1+{a^2}}}$C.$\frac{1}{1-ai}$D.$\frac{-1+ai}{{1+{a^2}}}$

查看答案和解析>>

同步练习册答案