分析 (Ⅰ)推导出BB1⊥AC,BA⊥AC,从而AC⊥平面ABB1A1,由此能证明平面B1AC⊥平面ABB1A1.
(Ⅱ)以A为原点,AC、AB、AA1所在直线分别为x,y,z轴,建立空间直角坐标系A-xyz,利用向是法能求出二面角B-B1C-A的正切值.
(Ⅲ)由$\overrightarrow{{A}_{1}C}$=($\sqrt{2}a$,0,-a),$\overrightarrow{{A}_{1}B}$=(0,a,a)是平面B1AC的一个法向量,利用向量法能求出直线A1C与平面B1AC所成角的正弦值.
解答
证明:(Ⅰ)由直三棱柱性质知BB1⊥平面ABC,
∴BB1⊥AC,又BA⊥AC,B1B∩BA=B,
∴AC⊥平面ABB1A1,又AC?平面B1AC,
∴平面B1AC⊥平面ABB1A1.
解:(Ⅱ)以A为原点,AC、AB、AA1所在直线分别为x,y,z轴,建立如图的空间直角坐标系A-xyz,
∵直线B1C与平面ABC成30°角,∴∠B1CB=30°,
∵AB=BB1=a,∴BC=$\sqrt{3}a$,AC=$\sqrt{2}a$,
则A(0,0,0),B(0,a,0),C($\sqrt{2}a$,0,0),A1(0,0,a),B1(0,a,a),
连结A1B,则$\overrightarrow{{A}_{1}B}$=(0,a,a)是平面B1AC的一个法向量,
设$\overrightarrow{n}$=(x,y,z)为平面BCC1B1的一个法向量,
则$\overrightarrow{n}•\overrightarrow{B{B}_{1}}$=0,$\overrightarrow{n}•\overrightarrow{BC}$=0,
又$\overrightarrow{B{B}_{1}}$=(0,0,a),$\overrightarrow{BC}$=($\sqrt{2}a,-a,0$),
∴$\left\{\begin{array}{l}{az=0}\\{\sqrt{2}ax-ay=0}\end{array}\right.$,令x=1,得$\overrightarrow{n}$=(1,$\sqrt{2}$,0),
设二面角B-B1C-A的大小为θ,
则cosθ=$\frac{|\overrightarrow{n}•\overrightarrow{{A}_{1}B}|}{|\overrightarrow{n}|•|\overrightarrow{{A}_{1}B}|}$=$\frac{\sqrt{3}}{3}$,sinθ=$\sqrt{1-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{6}}{3}$,
tanθ=$\frac{sinθ}{cosθ}$=$\frac{\frac{\sqrt{6}}{3}}{\frac{\sqrt{3}}{3}}$=$\sqrt{2}$,
∴二面角B-B1C-A的正切值为$\sqrt{2}$.
(Ⅲ)∵$\overrightarrow{{A}_{1}C}$=($\sqrt{2}a$,0,-a),$\overrightarrow{{A}_{1}B}$=(0,a,a)是平面B1AC的一个法向量,
设直线A1C与平面B1AC所成角为α,
则sinα=|cos<$\overrightarrow{{A}_{1}C},\overrightarrow{{A}_{1}B}$>|=$\frac{|\overrightarrow{{A}_{1}C}•\overrightarrow{{A}_{1}B}|}{|\overrightarrow{{A}_{1}C}|•|\overrightarrow{{A}_{1}B}|}$=$\frac{{a}^{2}}{\sqrt{3}a•\sqrt{2}a}$=$\frac{\sqrt{6}}{6}$.
∴直线A1C与平面B1AC所成角的正弦值为$\frac{\sqrt{6}}{6}$.
点评 本题考查面面垂直的证明,考查二面铁的正切值的求法,考查线面角的正弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 3 | C. | $\sqrt{5}$ | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a∈[0,4] | B. | a∈(0,4) | C. | a∈(-4,0] | D. | a∈(-4,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6+2$\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | 6 | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,1] | C. | [1,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com