分析 (Ⅰ)利用三角恒等变换化简函数f(x),根据三角函数的图象与性质即可求出函数f(x)的单调增区间;
(Ⅱ)根据三角函数的图象平移,得出函数F(x)的解析式,再利用余弦定理和基本不等式,结合三角形的三边关系,即可求出b的取值范围.
解答 解:(Ⅰ)函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$(1+cos2x)-$\frac{1}{2}$=sin(2x-$\frac{π}{6}$)-1,
令2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,k∈Z,
则kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,k∈Z,
所以函数f(x)的单调增区间为[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$],k∈Z;
(Ⅱ)函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,得函数y=sin(x-$\frac{π}{6}$)-1的图象,
再向左平移$\frac{π}{3}$个单位,得函数y=sin(x+$\frac{π}{3}$-$\frac{π}{6}$)-1的图象,
所以函数F(x)=sin(x+$\frac{π}{6}$)-1;
又△ABC中,a+c=4,F(B)=0,
所以$B+\frac{π}{6}=2kπ+\frac{π}{2},k∈Z$,
所以$B=\frac{π}{3}$;
由余弦定理可知,
b2=a2+c2-2ac•cos$\frac{π}{3}$=a2+c2-ac=(a+c)2-3ac≥16-3•${(\frac{a+c}{2})}^{2}$=4,
当且仅当a=c=2时取“=”,
所以b≥2;
又b<a+c=4,
所以b的取值范围是[2,4).
点评 本题考查了三角函数的图象与性质的应用问题,也考查了解三角形的应用问题,是综合性题目.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 32 | B. | 28 | C. | 24 | D. | 16 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{1+ai}$ | B. | $\frac{1+ai}{{1+{a^2}}}$ | C. | $\frac{1}{1-ai}$ | D. | $\frac{-1+ai}{{1+{a^2}}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,0) | B. | (-2,0) | C. | (-1,0) | D. | (2,3) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com