精英家教网 > 高中数学 > 题目详情
20.已知数列{an}的前n项和为Sn,a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),若对于任意n∈N*,当t∈[-1,1]时,不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,则实数x的取值范围为(-∞,-2]∪[2,+∞).

分析 a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),可得Sn+1-Sn=3(Sn-Sn-1),因此an+1=3an,n=1时也成立.利用等比数列的通项公式可得an=3n-1,$\frac{1}{{a}_{n}}$=$(\frac{1}{3})^{n-1}$,
因此数列$\{\frac{1}{{a}_{n}}\}$是等比数列.利用等比数列的求和公式可得:2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$).由对于任意n∈N*,当t∈[-1,1]时,不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,可得3≤x2+tx+1,即x2+tx-2≥0,令f(t)=xt+x2-2,利用一次函数的单调性即可得出.

解答 解:∵a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),
∴a1=1,a2=3,Sn+1-Sn=3(Sn-Sn-1),
∴an+1=3an,n=1时也成立.
∴数列{an}是公比为3的等比数列,首项为1.
∴an=3n-1
∴$\frac{1}{{a}_{n}}$=$(\frac{1}{3})^{n-1}$,
因此数列$\{\frac{1}{{a}_{n}}\}$是首项为1,公比为$\frac{1}{3}$的等比数列.
2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)=2×$\frac{[1-(\frac{1}{3})^{n}]}{1-\frac{1}{3}}$=3-$\frac{1}{{3}^{n-1}}$.
∵对于任意n∈N*,当t∈[-1,1]时,不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,
∴3≤x2+tx+1,
化为x2+tx-2≥0,
令f(t)=xt+x2-2,
则$\left\{\begin{array}{l}{f(-1)={x}^{2}-x-2≥0}\\{f(1)={x}^{2}+x-2≥0}\end{array}\right.$,解得x≥2或x≤-2,
∴实数x的取值范围为(-∞,-2]∪[2,+∞).
故答案为:(-∞,-2]∪[2,+∞).

点评 本题考查了递推关系、等比数列的通项公式与求和公式、恒成立问题的等价转化方法、一次函数的单调性,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知数列{an}的首项a1>0,前n项和为Sn.数列$\left\{{\left.{\frac{S_n}{n}}\right\}}$是公差为$\frac{a_1}{2}$的等差数列.
(1)求$\frac{a_6}{a_2}$的值;
(2)数列{bn}满足:bn+1+(-1)pnbn=2an,其中n,p∈N*.
(ⅰ)若p=a1=1,求数列{bn}的前4k项的和,k∈N*;
(ⅱ)当p=2时,对所有的正整数n,都有bn+1>bn,证明:${2^{a_1}}$-${2^{2{a_1}-1}}$<b1<${2^{{a_1}-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图都是腰长为2 的等腰直角三角形,则这个几何体的表面积为(  )
A.6+2$\sqrt{3}$B.2$\sqrt{3}$C.6D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△A BC中,若$\overrightarrow{{A}{B}}$=(1,2),$\overrightarrow{{A}C}$=(-2,3),则△ABC的面积为(  )
A.$\frac{7}{2}$B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=$\sqrt{3}$sinxcosx-cos2x-$\frac{1}{2}$.
( I)求函数f(x)的单调递增区间;
(II)将函数f(x)的图象各点纵坐标不变,横坐标伸长为原来的2倍,然后向左平移$\frac{π}{3}$个单位,得函数F(x)的图象.若a,b,c分别是△ABC三个内角A,B,C的对边,a+c=4,且F(B)=0,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设 A为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点,直线x=a与双曲线的一条渐近线交于点 M,点 M关于原点的对称点为 N,若双曲线的离心率为$\frac{{\sqrt{21}}}{3}$,则∠M A N=(  )
A.120°B.135°C.150°D.105°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.某村有2500人,其中青少年1000人,中年人900人,老年人600人,为了调查本村居民的血压情况,采用分层抽样的方法抽取一个样本,若从中年人中抽取36人,从青年人和老年人中抽取的个体数分别为a,b,则直线ax+by+8=0上的点到原点的最短距离为$\frac{{\sqrt{34}}}{34}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=log3x,若正数a,b满足b=9a,则f(a)-f(b)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知双曲线和离心率为sin$\frac{π}{4}$的椭圆有相同的焦点F1,F2,P是两曲线的一个公共点,若cos∠F1PF2=$\frac{1}{2}$,则双曲线的离心率等于(  )
A.2B.$\frac{{\sqrt{5}}}{2}$C.$\frac{{\sqrt{6}}}{2}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

同步练习册答案