精英家教网 > 高中数学 > 题目详情
8.在△A BC中,若$\overrightarrow{{A}{B}}$=(1,2),$\overrightarrow{{A}C}$=(-2,3),则△ABC的面积为(  )
A.$\frac{7}{2}$B.4C.7D.8

分析 根据向量坐标分别求出向量长度和向量夹角,根据三角形的面积公式进行求解即可.

解答 解:∵$\overrightarrow{{A}{B}}$=(1,2),$\overrightarrow{{A}C}$=(-2,3),
∴|$\overrightarrow{{A}{B}}$|=$\sqrt{1+4}$=$\sqrt{5}$,|$\overrightarrow{{A}C}$|=$\sqrt{4+9}$=$\sqrt{13}$,
则cos<$\overrightarrow{{A}{B}}$,$\overrightarrow{{A}C}$>=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{-2+6}{\sqrt{5}•\sqrt{13}}$=$\frac{4}{\sqrt{65}}$,
则sinA=sin<$\overrightarrow{{A}{B}}$,$\overrightarrow{{A}C}$>=$\sqrt{1-(\frac{4}{\sqrt{65}})^{2}}$=$\frac{7}{\sqrt{65}}$,
在三角形的面积S=$\frac{1}{2}$AB•ACsinA=$\frac{1}{2}×\sqrt{5}×\sqrt{13}×\frac{7}{\sqrt{65}}$=$\frac{7}{2}$,
故选:A.

点评 本题主要考查三角形面积的计算,根据向量数量积求出向量长度和向量夹角,结合三角形的面积公式是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.空间直角坐标系中的点($\sqrt{2}$,$\sqrt{2}$,1)关于z轴对称的点的柱坐标为(  )
A.(2,$\frac{π}{4}$,1)B.(2$\sqrt{2}$,$\frac{π}{4}$,1)C.(2,$\frac{5π}{4}$,1)D.(2$\sqrt{2}$,$\frac{5π}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积是(  )
A.50B.10C.30D.20

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在0,1,2,3,4,5这六个数中随机地抽取一个数记为a,再在剩余的五个数中随机地抽取一个数记为b,则所得两位数$\overline{ab}$是偶数的概率P为(  )
A.$\frac{11}{30}$B.$\frac{13}{30}$C.$\frac{11}{25}$D.$\frac{13}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知长方体A1B1C1D1-ABCD的外接球的体积为$\frac{32π}{3}$,则该长方体的表面积的最大值为(  )
A.32B.28C.24D.16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图,已知平面α∩平面β=l,α⊥β,A,B是直线l上的两点,C,D是平面β内的两点,且DA⊥l,CB⊥l,DA=4,AB=6,CB=8,P是平面α内的一动点,使得直线CP,DP与平面α所成角相等,则三角形PAB面积的最大值为12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和为Sn,a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),若对于任意n∈N*,当t∈[-1,1]时,不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,则实数x的取值范围为(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在菱形ABCD中,∠B=60°,若向量$\overrightarrow{{A}{B}}$=(${\sqrt{3}$,-1),则|${\overrightarrow{C{B}}$-$\overrightarrow{CD}}$|=(  )
A.1B.2C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系xOy中,A(-1,0),B(0,0),以AB为边在x轴上边作一个平行四边形,满足tan∠CAB•tan∠DBA=$\frac{1}{2}$,E($\frac{{\sqrt{2}}}{2}$,0),则CE长的取值范围是(  )
A.$(1,1+\frac{{\sqrt{2}}}{2})$B.$(1-\frac{{\sqrt{2}}}{2},1)$C.$(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$D.$(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

同步练习册答案