精英家教网 > 高中数学 > 题目详情
16.在0,1,2,3,4,5这六个数中随机地抽取一个数记为a,再在剩余的五个数中随机地抽取一个数记为b,则所得两位数$\overline{ab}$是偶数的概率P为(  )
A.$\frac{11}{30}$B.$\frac{13}{30}$C.$\frac{11}{25}$D.$\frac{13}{25}$

分析 确定基本事件的情况,利用古典概型的概率公式求解即可.

解答 解:由题意,a有5种取法,b有5种取法,故共有5×5=25种;
两位数$\overline{ab}$是偶数,b取0,a有5种取法,b取2或4,a有4种取法,故共有5+2×4=13种,
∴所得两位数$\overline{ab}$是偶数的概率P=$\frac{13}{25}$.
故选:D.

点评 本题用列举法列出基本事件比较麻烦,可以用组合数表示,如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图所示,在一个坡度一定的山坡AC的顶上有一高度为25m的建筑物CD.为了测量该山坡相对于水平地面的坡角θ,在山坡的A处测得∠DAC=15°,沿山坡前进25m到达B处,又测得∠DBC=45°.根据以上数据计算可得cosθ=$\frac{\sqrt{3}-1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设锐角△ABC的三个内角A,B,C所对的边分别为a,b,c,且$\sqrt{3}$ccosA+$\sqrt{3}$acosC=2asinB
(1)求A
(2)若△ABC的面积为2$\sqrt{3}$,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知直线l:x+y=1在矩阵$A=[\begin{array}{l}m,n\\ 0,1\end{array}]$对应的变换作用下变为直线l':x-y=1,求矩阵A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.一个几何体的三视图都是腰长为2 的等腰直角三角形,则这个几何体的表面积为(  )
A.6+2$\sqrt{3}$B.2$\sqrt{3}$C.6D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex+m-lnx.
(I) 设x=1是函数f(x)的极值点,求证:ex-elnx≥e;
(II) 设x=x0是函数f(x)的极值点,且f(x)≥0恒成立,求m的取值范围.(其中常数a满足alna=1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△A BC中,若$\overrightarrow{{A}{B}}$=(1,2),$\overrightarrow{{A}C}$=(-2,3),则△ABC的面积为(  )
A.$\frac{7}{2}$B.4C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设 A为双曲线C:$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左顶点,直线x=a与双曲线的一条渐近线交于点 M,点 M关于原点的对称点为 N,若双曲线的离心率为$\frac{{\sqrt{21}}}{3}$,则∠M A N=(  )
A.120°B.135°C.150°D.105°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.P为双曲线C:$\frac{x^2}{a^2}-\frac{y^2}{{{a^2}-4}}$=1(a>2)上位于第一象限内一点,且OP=2$\sqrt{2}$,令∠POx=θ,则θ的取值范围为(  )
A.$(0,\frac{π}{12}]$B.$(0,\frac{π}{6}]$C.$(0,\frac{π}{4}]$D.$(0,\frac{π}{3}]$

查看答案和解析>>

同步练习册答案