| A. | $(0,\frac{π}{12}]$ | B. | $(0,\frac{π}{6}]$ | C. | $(0,\frac{π}{4}]$ | D. | $(0,\frac{π}{3}]$ |
分析 利用参数法求出点P的坐标,结合基本不等式进行求解即可.
解答
解:设∠POx=θ,则θ为锐角且$P(2\sqrt{2}cosθ,2\sqrt{2}sinθ)$,
所以$\frac{{8{{cos}^2}θ}}{a^2}-\frac{{8{{sin}^2}θ}}{{{a^2}-4}}=1$,
化简得,$cos2θ=\frac{1}{8}[({a^2}-2)+\frac{12}{{{a^2}-2}}]≥\frac{1}{8}•2\sqrt{({a^2}-2)•\frac{12}{{{a^2}-2}}}=\frac{{\sqrt{3}}}{2}$,当且仅当${a^2}-2=\frac{12}{{{a^2}-2}}$,
即${a^2}=2(\sqrt{3}+1)$时取等号,所以$0<θ≤\frac{π}{12}$.
故选:A
点评 本题主要考查双曲线性质的应用,利用参数法结合基本不等式求最值是解决本题的关键.综合性较强,有一定的难度.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{11}{30}$ | B. | $\frac{13}{30}$ | C. | $\frac{11}{25}$ | D. | $\frac{13}{25}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 2$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 5 | C. | 1或-5 | D. | -5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(1,1+\frac{{\sqrt{2}}}{2})$ | B. | $(1-\frac{{\sqrt{2}}}{2},1)$ | C. | $(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$ | D. | $(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥β,α∥β,则a∥b | |
| B. | 若a∥α,b∥β,a∥b,则α∥β | |
| C. | 若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β | |
| D. | 若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com