精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=log3x,若正数a,b满足b=9a,则f(a)-f(b)=-2.

分析 由已知,结合对数的运算性质,计算可得答案.

解答 解:∵函数f(x)=log3x,b=9a,
∴f(a)-f(b)=log3a-log3b=log3$\frac{a}{b}$=log3$\frac{1}{9}$=-2,
故答案为:-2

点评 本题考查的知识点是对数的运算性质,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积是(  )
A.50B.10C.30D.20

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的前n项和为Sn,a1=1,a2=3,Sn+1=4Sn-3Sn-1(n≥2),若对于任意n∈N*,当t∈[-1,1]时,不等式2(${\frac{1}{a_1}$+$\frac{1}{a_2}$+…+$\frac{1}{a_n}}$)<x2+tx+1恒成立,则实数x的取值范围为(-∞,-2]∪[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在菱形ABCD中,∠B=60°,若向量$\overrightarrow{{A}{B}}$=(${\sqrt{3}$,-1),则|${\overrightarrow{C{B}}$-$\overrightarrow{CD}}$|=(  )
A.1B.2C.3D.2$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.将函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0,x∈R)的图象向右平移$\frac{π}{6}$个单位后,所得到的图象关于y轴对称,则ω的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在1,2,4,5这4个数中一次随机地取2个数,则所取的2个数的和为6的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{4}$C.$\frac{2}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知数列{log3(an-1)}(n∈N*)为等差数列,且a2=10,a4=82.
(1)求数列{an}的通项公式;
(2)若bn=$\frac{1}{{{a_{n+1}}-{a_n}}}$,求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在直角坐标系xOy中,A(-1,0),B(0,0),以AB为边在x轴上边作一个平行四边形,满足tan∠CAB•tan∠DBA=$\frac{1}{2}$,E($\frac{{\sqrt{2}}}{2}$,0),则CE长的取值范围是(  )
A.$(1,1+\frac{{\sqrt{2}}}{2})$B.$(1-\frac{{\sqrt{2}}}{2},1)$C.$(1-\frac{{\sqrt{3}}}{2},1+\frac{{\sqrt{2}}}{2})$D.$(1-\frac{{\sqrt{2}}}{2},1+\frac{{\sqrt{2}}}{2})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)是周期为2的偶函数,且当x∈[0,1]时,f(x)=x2,函数g(x)=kx(k>0),若不等式f(x)≤g(x)的解集是[0,a]∪[b,c]∪[d,+∞)(d>c>b>a>0),则正数k的取值范围是[$\frac{1}{5}$,$\frac{1}{3}$).

查看答案和解析>>

同步练习册答案