精英家教网 > 高中数学 > 题目详情

(本题满分12分)设函数f(x)=x3ax2+3x+5(a>0).
(1)已知f(x)在R上是单调函数,求a的取值范围;
(2)若a=2,且当x∈[1,2]时,f(x)≤m恒成立,求实数m的取值范围.

(1) 0<a≤6 ;(2) [15,+∞).

解析试题分析:(1)f′(x)=3x2-ax+3,              2分
其判别式Δ=a2-36.
当0<a≤6时,f′(x)≥0恒成立,                4分
此时f(x)在R上为增函数.                       6分
(2)a=2时,f′(x)=3x2-2x+3>0恒成立,
因此f(x)在(-∞,+∞)上是增函数,                8分
从而f(x)在[1,2]上递增,则f(x)max=f(2)=15,        10分
要使f(x)≤m在x∈[1,2]上恒成立,只需15≤m,
解得m∈[15,+∞).
故m的取值范围是[15,+∞).                      12分
考点:利用导数研究函数的单调性。
点评:解决恒成立问题常用变量分离法,变量分离法主要通过两个基本思想解决恒成立问题, 思路1:上恒成立;思路2: 上恒成立

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(1)(5分)若函数,则_______________.
(2)(5分)化简:=____________.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题14分)如图,一水渠的横断面是抛物线形,O是抛物线的顶点,口宽EF=4米,高3米,建立适当的直角坐标系,(1)求抛物线方程.(2)若将水渠横断面改造成等腰梯形ABCD,要求高度不变,只挖土,不填土,求梯形ABCD的下底AB多大时,所挖的土最少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)选修4-5:不等式选讲
已知函数
(1)当时,求函数的定义域;
(2)若关于的不等式的解集是,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求值:; (2)已知的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某商店如果将进价为8元的商品按每件10元售出,每天可销售200件,现在提高售价以赚取更多利润.已知每涨价0.5元,该商店的销售量会减少10件,问将售价定为多少时,才能使每天的利润最大?其最大利润为多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)设
(1)当时,求曲线处的切线的斜率;
(2)如果存在,使得成立,求满足上述条件的最大整数
(3)如果对于任意,都有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
某市郊区一村民小组有100户农民,且都从事蔬菜种植.据调查,平均每户的年收入为3万元.为了调整产业结构,郊区政府决定动员该村部分农民从事蔬菜加工.据预测,若能动员户农民从事蔬菜加工,则剩下的继续从事蔬菜种植的农民平均每户的年收入有望提高%,而从事蔬菜加工的农民平均每户的年收入将为万元.
(1)在动员户农民从事蔬菜加工后,要使从事蔬菜种植的农民的总年收入不低于动员前从事蔬菜种植的农民的总年收入,求的取值范围;
(2)在(1)的条件下,要使这100户农民中从事蔬菜加工的农民的总年收入始终不高于从事蔬菜种植的农民的总年收入,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题12分)某公司生产一种产品每年需投入固定成本为0.5万元,此外每生产100件这种产品还需要增加投入0.25万元.经预测知,当售出这种产品百件时,若,则销售所得的收入为万元:若,则销售收入为万元.
(1)若该公司的这种产品的年产量为百件,请把该公司生产并销售这种产品所得的年利润表示为当年生产量的函数;
(2)当年产量为多少时,当年公司所获利润最大?

查看答案和解析>>

同步练习册答案