精英家教网 > 高中数学 > 题目详情
16.若“$?x∈[{0,\frac{π}{3}}],m≥2tanx$”是真命题,则实数m的最小值为2$\sqrt{3}$.

分析 将条件“$?x∈[{0,\frac{π}{3}}],m≥2tanx$”是转化为“x∈[0,$\frac{π}{3}$]时,m≥2(tanx)max”,再利用y=tanx在[0,$\frac{π}{3}$]的单调性求出tanx的最大值即可.

解答 解:∵“?x∈[0,$\sqrt{3}$],m≥2tanx”是真命题,
∴x∈[0,$\frac{π}{3}$]时,m≥2(tanx)max
∵y=tanx在[0,$\frac{π}{3}$]的单调递增,
∴x=$\frac{π}{3}$时,tanx取得最大值为$\sqrt{3}$,
∴m≥2$\sqrt{3}$,即m的最小值$2\sqrt{3}$,
故答案为:2$\sqrt{3}$

点评 本题主要考查了转化思想,将恒成立问题转化为最值问题,再通过正切函数的单调性求出函数的最值即可,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知数列{an}满足条件$\frac{1}{3}{a_1}+\frac{1}{3^2}{a_2}+\frac{1}{3^3}{a_3}+…+\frac{1}{3^n}{a_n}=3n+1$,则数列{an}的通项公式为(  )
A.${a_n}={3^n}$B.${a_n}={3^{n+1}}$
C.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^n},n≥2\end{array}\right.$D.${a_n}=\left\{\begin{array}{l}12,n=1\\{3^{n+1}},n≥2\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设函数f(x)定义在实数集R上,满足f(1+x)=f(1-x),当x≥1时,f(x)=2x,则下列结论正确的是(  )
A.f($\frac{1}{3}$)<f(2)<f($\frac{1}{2}$)B.f($\frac{1}{2}$)<f(2)<f($\frac{1}{3}$)C.f($\frac{1}{2}$)<f($\frac{1}{3}$)<f(2)D.f(2)<f($\frac{1}{3}$)<f($\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=19,则MN的长为(  )
A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设集合S={x|x<-5或x>5},T={x|-7<x<3},则S∩T=(  )
A.{x|-7<x<-5}B.{x|3<x<5}C.{x|-5<x<3}D.{{x|-7<x<5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=2相切,则以a,b,c为三边长的三角形(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(-1,0).
(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数$y=\frac{1}{2}{x^2}+\frac{1}{2}$的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求函数f(x)的值域
(2)记锐角△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=$\sqrt{2}$,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.过双曲线${x^2}-\frac{y^2}{2}=1$的右焦点作直线l交双曲线于A、B两点,若|AB|=4,则满足条件的直线l有(  )
A.4条B.3条C.2条D.无数条

查看答案和解析>>

同步练习册答案