分析 (1)由向量数量积的关系,求出f(x)的表达式,结合x的范围可得值域
(2)先求出B,再根据正弦定理即可求出c,再根据两角和的正弦公式求出sinA,再由正弦定理求出a.
解答 解:(1)∵$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),
∴f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$=sin2x+sinxcosx=$\frac{1}{2}$(1-cos2x)+$\frac{1}{2}$sin2x=$\frac{1}{2}$sin2x-$\frac{1}{2}$cos2x+$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$)+$\frac{1}{2}$,
∵x∈[-$\frac{π}{4}$,$\frac{π}{4}$],
∴(2x-$\frac{π}{4}$)∈[-$\frac{3π}{4}$,$\frac{π}{4}$],
∴sin(2x-$\frac{π}{4}$)∈[-1,$\frac{\sqrt{2}}{2}$],
∴f(x)∈[-$\frac{\sqrt{2}}{2}$+$\frac{1}{2}$,1]
(2)记锐角△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,
∴$\frac{\sqrt{2}}{2}$sin(2B-$\frac{π}{4}$)+$\frac{1}{2}$=1,
∴sin(2B-$\frac{π}{4}$)=$\frac{\sqrt{2}}{2}$,
∴2B-$\frac{π}{4}$=$\frac{π}{4}$,或2B-$\frac{π}{4}$=$\frac{3π}{4}$,
解得B=$\frac{π}{4}$或B=$\frac{π}{2}$(舍去)
∵b=$\sqrt{2}$,c=$\sqrt{3}$,
由正弦定理可得$\frac{b}{sinB}$=$\frac{c}{sinC}$,
∴sinC=$\frac{\sqrt{3}×\frac{\sqrt{2}}{2}}{\sqrt{2}}$=$\frac{\sqrt{3}}{2}$,
∴C=$\frac{π}{3}$,
∴sinA=sin(B+C)=sinBcosC+cosBsinC=$\frac{\sqrt{2}}{2}$×$\frac{1}{2}$+$\frac{\sqrt{2}}{2}$×$\frac{\sqrt{3}}{2}$=$\frac{\sqrt{2}+\sqrt{6}}{4}$,
由正弦定理可得$\frac{a}{sinA}$=$\frac{b}{sinB}$,
∴a=$\frac{\sqrt{2}×\frac{\sqrt{2}+\sqrt{6}}{4}}{\frac{\sqrt{2}}{2}}$=$\frac{\sqrt{6}+\sqrt{2}}{2}$
点评 本题考查了向量的数量积的运算和三角形函数的性质,以及正弦定理和两角和的正弦公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{5{x}^{2}}{16}$-$\frac{5{y}^{2}}{9}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com