分析 (1)先求出该顾客不中奖的概率,由此利用对立事件概率计算公式能求出中奖的概率.
(2)由题意知X的可能取值为0,1,2,分别求出相应的概率,由此能求出X的分布列和EX.
解答 解:(1)该顾客不中奖的概率为P′=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
∴中奖的概率为P=1-$\frac{1}{3}$=$\frac{2}{3}$.
(2)由题意知X的可能取值为0,1,2,
P(X=0)=$\frac{{C}_{6}^{2}}{{C}_{10}^{2}}$=$\frac{1}{3}$,
P(X=1)=$\frac{{C}_{4}^{1}{C}_{6}^{1}}{{C}_{10}^{2}}$=$\frac{8}{15}$,
P(X=2)=$\frac{{C}_{4}^{2}}{{C}_{10}^{2}}$=$\frac{2}{15}$,
∴X的分布列为:
| X | 0 | 1 | 2 |
| P | $\frac{1}{3}$ | $\frac{8}{15}$ | $\frac{2}{15}$ |
点评 本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要认真审题,注意排列组合知识的合理运用.
科目:高中数学 来源: 题型:选择题
| A. | $1+\sqrt{3}$ | B. | $\sqrt{2}$ | C. | $2+\sqrt{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 锐角三角形 | B. | 直角三角形 | C. | 钝角三角形 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $6-4\sqrt{2}$ | B. | $6+4\sqrt{2}$ | C. | $4+6\sqrt{2}$ | D. | $4-6\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com