精英家教网 > 高中数学 > 题目详情
6.如图,在三棱柱ABC-A1B1C1中,A1A⊥平面ABC,D为棱AA1的中点,AB=AC=AD=1,
(Ⅰ) 求证:平面DBC1⊥平面BCC1B1
(Ⅱ) 若直线A1B与B1C1所成角为75°,求二面角B-AA1-C的余弦值.

分析 (Ⅰ)通过直线与平面垂直的判定定理,然后利用平面与平面垂直的判定定理证明即可.
(Ⅱ)利用异面直线所成角,转化求解BO,通过求解∠BAC的余弦值,即可求解二面角B-AA1-C的余弦值.

解答 解:(Ⅰ)如图:取BC1的中点E,BC 的中点O,连结AO,OE,ED,
A1A⊥平面ABC,D为棱AA1的中点,AB=AC=AD=1,
∴EO$\stackrel{∥}{=}\frac{1}{2}A{A}_{1}$,AO⊥BC,AO⊥AA1,∴AO⊥OE,OE∩BC=O,
∴AO⊥平面BCC1B1
DE?平面DBC1
∴平面DBC1⊥平面BCC1B1
(Ⅱ)直线A1B与B1C1所成角为75°,就是直线A1B与BC所成角为75°,
∵A1A⊥平面ABC,AB=AC=1,∠BAC就是二面角B-AA1-C的平面角,
∴∠A1CB=75°,A1A=2,则A1B=A1C=$\sqrt{5}$,
BO=A1Bcos75°=$\frac{\sqrt{5}(\sqrt{6}-\sqrt{2})}{4}$,可得BC2=AB2+AC2-2ACABcos∠BAC.
可得:cos∠BAC=$\frac{2-\frac{5(\sqrt{6}-\sqrt{2})^{2}}{4}}{2×1×1}$=$\frac{5\sqrt{3}-8}{2}$.

点评 本题考查直线与平面垂直的判定定理以及性质定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=$\frac{7x+5}{x+1}$,数列{an}满足:2an+1-2an+an+1an=0且an≠0.数列{bn}中,b1=f(0)且bn=f(an-1).
(1)求证:数列{$\frac{1}{{a}_{n}}$}是等差数列;
(2)求数列{anan+1}的前n项和Sn; 
(3)求数列{|bn|}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示的程序框图,如果输出的是30,那么判断框中应填写(  )
A.i>3?B.i≤5?C.i<4?D.i≤4?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=2x2-lnx在(k-1,k)上存在极值点,则实数k的取值范围为($\frac{1}{2}$,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,二等奖券3张,其余6张没有奖,某顾客从此10张券中任抽2张,
(1)求该顾客中奖的概率;
(2)设随机变量X为顾客抽的中奖券的张数,求X的概率分布及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,AD⊥DC,AB⊥BC,QD⊥平面ABCD,PA∥QD,PA=1,AD=AB=QD=2.
(1)求证:平面PAB⊥平面QBC;
(2)求该组合体QPABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列三句话按三段论的模式排列顺序是(  )
①2010能被2整除;
②一切偶数都能被2整除;
③2010是偶数.
A.①②③B.③①②C.②③①D.②③①

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.实数x,y满足$\left\{\begin{array}{l}{x-y-1≤0}\\{x+y-3≤0}\\{x≥1}\end{array}\right.$,则目标函数z=2x-y的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.等比数列{an}的各项均为正数,且a4=a2•a5,3a5+2a4=1,则Tn=a1a2…an的最大值为27.

查看答案和解析>>

同步练习册答案