精英家教网 > 高中数学 > 题目详情
4.已知函数y=ax+2-2的图象过的定点在函数y=-$\frac{n}{m}$x-$\frac{1}{m}$的图象上,其中m,n为正数,求$\frac{1}{m}$+$\frac{1}{n}$的最小值.

分析 当x=-2时,y=a0-2=-1,可得函数y=ax+2-2的图象过的定点(-2,-1).把(-2,-1)代入函数y=-$\frac{n}{m}$x-$\frac{1}{m}$可得m+2n=1.再利用“乘1法”和基本不等式即可得出.

解答 解:当x=-2时,y=a0-2=-1,∴函数y=ax+2-2的图象过的定点(-2,-1).
把(-2,-1)代入函数y=-$\frac{n}{m}$x-$\frac{1}{m}$可得-1=$\frac{2n}{m}$-$\frac{1}{m}$,化为m+2n=1.
又∵m,n为正数,∴$\frac{1}{m}$+$\frac{1}{n}$=(m+2n)($\frac{1}{m}$+$\frac{1}{n}$)=3+$\frac{2n}{m}$+$\frac{m}{n}$≥3+2$\sqrt{2}$,
当且仅当m=$\sqrt{2}$n=$\sqrt{2}$-1取等号.
∴$\frac{1}{m}$+$\frac{1}{n}$的最小值是3+2$\sqrt{2}$.

点评 本题考查了指数函数的性质、“乘1法”和基本不等式的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow m=(sinx,-1)$,向量$\overrightarrow n=(\sqrt{3}cosx,-\frac{1}{2})$,函数$f(x)=(\overrightarrow m+\overrightarrow n)•\overrightarrow m$.
(Ⅰ)求f(x)单调递减区间;
(Ⅱ)已知a,b,c分别为△ABC内角A,B,C的对边,A为锐角,$a=2\sqrt{3}$,c=4,且f(A)恰是f(x)在$[{0,\frac{π}{2}}]$上的最大值,求A,b,和△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN,若AB=14,AC=19,则MN的长为(  )
A.2B.2.5C.3D.3.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线ax+by+c=0(a,b,c都是正数)与圆x2+y2=2相切,则以a,b,c为三边长的三角形(  )
A.锐角三角形B.直角三角形C.钝角三角形D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)的定义域为R,如果存在函数g(x),使得f(x)≥g(x)对于一切实数x都成立,那么称g(x)为函数f(x)的一个承托函数.已知函数f(x)=ax2+bx+c的图象经过点(-1,0).
(1)若a=1,b=2.写出函数f(x)的一个承托函数(结论不要求证明);
(2)判断是否存在常数a,b,c,使得y=x为函数f(x)的一个承托函数,且f(x)为函数$y=\frac{1}{2}{x^2}+\frac{1}{2}$的一个承托函数?若存在,求出a,b,c的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知矩形ABCD中,AB=2AD=4,E为CD的中点,沿AE将三角形AED折叠,使平面ADE⊥平面ABCE.
(1)求证:BE⊥AD;
(2)若CD=2$\sqrt{3}$,求直线AC与平面BDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知向量$\overrightarrow{a}$=(sinx,cosx),$\overrightarrow{b}$=(sinx,sinx),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$
(1)若x∈[-$\frac{π}{4}$,$\frac{π}{4}$],求函数f(x)的值域
(2)记锐角△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=$\sqrt{2}$,c=$\sqrt{3}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}是等差数列,数列{bn}是公比大于零的等比数列,且a1=b1=2,a3=b3=8
(1)求数列{an}和{bn}的通项公式
(2)求{anbn}前n项和Sn
(3)记cn=$\frac{n+2}{n(n+1){b}_{n}}$,求{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某校有老师200人,男学生1400人,女学生1200人,现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为90人,则n=210.

查看答案和解析>>

同步练习册答案