精英家教网 > 高中数学 > 题目详情

【题目】如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4在平面内,是直线上的动点,则点到平面的距离为_______,点到直线的距离的最大值为_______.

【答案】

【解析】

三棱锥的底面边长和侧棱长都为4,所以在平面的投影为的重心,利用解直角三角形,即可求出点到平面的距离;,可得点是以为直径的球面上的点,所以到直线的距离为以为直径的球面上的点到的距离,

最大距离为分别过的两个平行平面间距离加半径,即可求出结论.

边长为,则中线长为

到平面的距离为

是以为直径的球面上的点,

所以到直线的距离为以为直径的球面上的点到的距离,

最大距离为分别过的两个平行平面间距离加半径.

又三棱锥的底面边长和侧棱长都为4

以下求过的两个平行平面间距离,

分别取中点,连

,同理

分别过

直线确定平面,直线确定平面

,同理

为所求,

所以到直线最大距离为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在开展学习强国的活动中,某校高三数学教师成立了党员和非党员两个学习组,其中党员学习组有4名男教师、1名女教师,非党员学习组有2名男教师、2名女教师,高三数学组计划从两个学习组中随机各选2名教师参加学校的挑战答题比赛.

1)求选出的4名选手中恰好有一名女教师的选派方法数;

2)记X为选出的4名选手中女教师的人数,求X的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,两直角边的长分别为,以的中点为原点,所在直线为轴,以的垂直平分线为轴建立平面直角坐标系,椭圆为焦点,且经过点.

1)求椭圆的方程;

2)直线相交于两点,在轴上是否存在点,使得为等边三角形,若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线交于两点,过分别作的切线,两切线的交点为,直线交于两点

1)证明:点始终在直线上且

2)求四边形的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,定点 ,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线

1)求曲线的方程

2)过点的直线交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足=1,则等于(

A.-B.C.-D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在上的函数满足: , .若方程有5个实根,则正数a的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.2015年以来,“一带一路”建设成果显著.如图是20152019年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( )

A.这五年,出口总额之和比进口总额之和

B.这五年,2015年出口额最少

C.这五年,2019年进口增速最快

D.这五年,出口增速前四年逐年下降

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 底面分别是的中点, ,且.

(1)求证: 平面

(2)在线段上是否存在点,使二面角的大小为?若存在,求出的长;

若不存在,请说明理由.

查看答案和解析>>

同步练习册答案