精英家教网 > 高中数学 > 题目详情

【题目】已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线交于两点,过分别作的切线,两切线的交点为,直线交于两点

1)证明:点始终在直线上且

2)求四边形的面积的最小值.

【答案】1)见解析(2)最小值为32

【解析】

1)根据抛物线的定义,判断出的轨迹为抛物线,并由此求得轨迹的方程.设出两点的坐标,利用导数求得切线的方程,由此求得点的坐标.写出直线的方程,联立直线的方程和曲线的方程,根据韦达定理求得点的坐标,并由此判断出始终在直线上,且.

2)设直线的倾斜角为,求得的表达式,求得的表达式,由此求得四边形的面积的表达式进而求得四边形的面积的最小值.

(1)∵动圆过定点,且与直线相切,∴动圆圆心到定点和定直线的距离相等,∴动圆圆心的轨迹是以为焦点的抛物线,∴轨迹的方程为:

,∴直线的方程为:,即:①,同理,直线的方程为:②,

由①②可得:

直线方程为:,联立可得:

,∴点始终在直线上且

2)设直线的倾斜角为,由(1)可得:

∴四边形的面积为:,当且仅当,即时取等号,∴四边形的面积的最小值为32.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系;曲线C1的普通方程为(x-1)2 +y2 =1,曲线C2的参数方程为θ为参数).

(Ⅰ)求曲线C1C2的极坐标方程:

(Ⅱ)设射线θ=(ρ>0)分别与曲线C1C2相交于AB两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体中,平面,四边形为菱形,,点分别在棱.

1)若平面,设,求的值;

2)若,直线与平面所成角的正切值为,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆x轴负半轴交于,离心率.

1)求椭圆C的方程;

2)设直线与椭圆C交于两点,连接AM,AN并延长交直线x=4两点,若,直线MN是否恒过定点,如果是,请求出定点坐标,如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,点是椭圆上一点,以为直径的圆过点.

1)求椭圆的方程;

2)过点且斜率大于0的直线的另一个交点为,与直线的交点为,过点且与垂直的直线与直线交于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由矩形ADEBRtABC和菱形BFGC组成的一个平面图形,其中AB=1BE=BF=2,∠FBC=60°,将其沿ABBC折起使得BEBF重合,连结DG,如图2.

1)证明:图2中的ACGD四点共面,且平面ABC⊥平面BCGE

2)求图2中的二面角BCGA的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直线平面,垂足为,三棱锥的底面边长和侧棱长都为4在平面内,是直线上的动点,则点到平面的距离为_______,点到直线的距离的最大值为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线的方程为,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3)若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,射线与曲线交于两点,直线与曲线相交于两点.

(Ⅰ)求直线的普通方程和曲线C的直角坐标方程;

(Ⅱ)当时,求的值.

查看答案和解析>>

同步练习册答案