【题目】已知椭圆的左右焦点分别为,,点是椭圆上一点,以为直径的圆:过点.
(1)求椭圆的方程;
(2)过点且斜率大于0的直线与的另一个交点为,与直线的交点为,过点且与垂直的直线与直线交于点,求面积的最小值.
科目:高中数学 来源: 题型:
【题目】2013年至201 9年我国二氧化硫的年排放量(单位:万吨)如下表,则以下结论中错误的是( )
A.二氧化硫排放量逐年下降
B.2018年二氧化硫减排效果最为显著
C.2017年至2018年二氧化硫减排量比2013年至2016年二氧化硫减排量的总和大
D.2019年二氧化硫减排量比2018年二氧化硫减排量有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】支付宝和微信支付已经成为现如今最流行的电子支付方式,某市通过随机询问100名居民(男女居民各50名)喜欢支付宝支付还是微信支付,得到如下的列联表:
支付宝支付 | 微信支付 | |
男 | 40 | 10 |
女 | 25 | 25 |
附表及公式:,.
P() | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
则下面结论正确的是( )
A.有以上的把握认为“支付方式与性别有关”
B.在犯错误的概率超过的前提下,认为“支付方式与性别有关”
C.在犯错误的概率不超过的前提下,认为“支付方式与性别有关”
D.有以上的把握认为“支付方式与性别无关”
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在中,两直角边,的长分别为和,以的中点为原点,所在直线为轴,以的垂直平分线为轴建立平面直角坐标系,椭圆以,为焦点,且经过点.
(1)求椭圆的方程;
(2)直线:与相交于,两点,在轴上是否存在点,使得为等边三角形,若存在,求出直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若曲线在点处的切线与直线垂直,求函数的单调区间;
(2)若对于任意都有成立,试求的取值范围;
(3)记.当时,函数在区间上有两个零点,求实数的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆过定点,且与直线相切,动圆圆心的轨迹为,过作斜率为的直线与交于两点,过分别作的切线,两切线的交点为,直线与交于两点.
(1)证明:点始终在直线上且;
(2)求四边形的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,定点 ,为平面内一动点,以线段为直径的圆内切于圆,设动点的轨迹为曲线
(1)求曲线的方程
(2)过点的直线与交于两点,已知点,直线分别与直线交于两点,线段的中点是否在定直线上,若存在,求出该直线方程;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】这次新冠肺炎疫情,是新中国成立以来在我国发生的传播速度最快、感染范围最广、防控难度最大的一次重大突发公共卫生事件.中华民族历史上经历过很多磨难,但从来没有被压垮过,而是愈挫愈勇,不断在磨难中成长,从磨难中奋起.在这次疫情中,全国人民展现出既有责任担当之勇、又有科学防控之智.某校高三学生也展开了对这次疫情的研究,一名同学在数据统计中发现,从2020年2月1日至2月7日期间,日期和全国累计报告确诊病例数量(单位:万人)之间的关系如下表:
日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
全国累计报告确诊病例数量(万人) | 1.4 | 1.7 | 2.0 | 2.4 | 2.8 | 3.1 | 3.5 |
(1)根据表中的数据,运用相关系数进行分析说明,是否可以用线性回归模型拟合与的关系?
(2)求出关于的线性回归方程(系数精确到0.01).并预测2月10日全国累计报告确诊病例数.
参考数据:,,,.
参考公式:相关系数
回归方程中斜率和截距的最小二乘估计公式分别为:
,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com