【题目】(1)已知数列,其中,且数列为等比数列,求常数p;
(2)设、是公比不相等的两个等比数列,,证明:数列不是等比数列.
【答案】(1)p=2或p=3;(2)证明见解析.
【解析】
(1)第一问中,利用给定的等比数列,结合定义得到p的值;(2)根据设、是公比不相等的两个等比数列,,那么可验证前几项是否是等比数列来判定结论.
(1)因为{cn+1-pcn}是等比数列,
故有:(cn+1-pcn)2=(cn+2-pcn+1)(cn-pcn-1),将cn=2n+3n代入上式,得:
[2n+1+3n+1-p(2n+3n)]2=[2n+2+3n+2-p(2n+1+3n+1)]·[2n+3n-p(2n-1+3n-1)],
即[(2-p)2n+(3-p)3n]2
=[(2-p)2n+1+(3-p)3n+1][(2-p)2n-1+(3-p)3n-1],
整理得(2-p)(3-p)·2n·3n=0,解得p=2或p=3.
(2)证明:设{an}、{bn}的公比分别为p、q,p≠q,cn=an+bn.
为证{cn}不是等比数列只需证c22≠c1·c3.
事实上,c22=(a1p+b1q)2=a12p2+b12q2+2a1b1pq,
c1·c3=(a1+b1)(a1p2+b1q2)=a12p2+b12q2+a1b1(p2+q2),
由于p≠q,p2+q2>2pq,又a1、b1不为零,
因此c22≠c1·c3,
故{cn}不是等比数列.
本试题主要是考查了等比数列的概念的运用.
科目:高中数学 来源: 题型:
【题目】某城市现有人口总数为万人,如果年自然增长率为,试解答下列问题:
(1)写出该城市经过年后的人口总数关于的函数关系式;
(2)用程序流程图表示计算年以后该城市人口总数的算法;
(3)用程序流程图表示如下算法:计算大约多少年以后该城市人口将达到万人.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的图像是由函数的图像经如下变换得到:先将图像上所有点的纵坐标伸长到原来的2倍(横坐标不变),再将所得到的图像向右平移个单位长度.
(Ⅰ)求函数的解析式,并求其图像的对称轴方程;
(Ⅱ)已知关于的方程在内有两个不同的解.
(1)求实数m的取值范围;
(2)证明:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
(注意:在试题卷上作答无效)
已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方案:
方案甲:逐个化验,直到能确定患病动物为止;
方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.
求依方案甲所需化验次数不少于依方案乙所需化验次数的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称为“三角形”数列,对于“三角形”数列,如果函数使得仍为一个“三角形”数列,则称是数列的“保三角形函数”,.
(1)已知是首项为2,公差为1的等差数列,若是数列的“保三角形函数”,求的取值范围;
(2)已知数列的首项为2010,是数列的前项和,且满足,证明是“三角形”数列;
(3)根据“保三角形函数的定义,对函数,和数列1,提出一个正确的命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
按照某学者的理论,假设一个人生产某产品单件成本为元,如果他卖出该产品的单价为元,则他的满意度为;如果他买进该产品的单价为元,则他的满意度为.如果一个人对两种交易(卖出或买进)的满意度分别为和,则他对这两种交易的综合满意度为.
现假设甲生产A、B两种产品的单件成本分别为12元和5元,乙生产A、B两种产品的单件成本分别为3元和20元,设产品A、B的单价分别为元和元,甲买进A与卖出B的综合满意度为,乙卖出A与买进B的综合满意度为
(1)求和关于、的表达式;当时,求证:=;
(2)设,当、分别为多少时,甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为,试问能否适当选取、的值,使得和同时成立,但等号不同时成立?试说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知四棱锥中,底面为菱形,平面, 为上一点,为菱形对角线的交点.
(Ⅰ)证明:平面平面;
(Ⅱ)若,四棱锥的体积是四棱锥的体积的,求二面角的正切值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是某高架桥箱梁的横截面,它由上部路面和下部支撑箱两部分组成.如图2,路面宽度,下部支撑箱CDEF为等腰梯形(),且.为了保证承重能力与稳定性,需下部支撑箱的面积为,高度为2m且,若路面AB.侧边CF和DE,底部EF的造价分别为4a千元/m,5a千元/m,6a千元/m(a为正常数),.
(1)试用θ表示箱梁的总造价y(千元);
(2)试确定cosθ的值,使总造价最低?并求最低总造价.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com