精英家教网 > 高中数学 > 题目详情
已知f(x)是定义在R上的偶函数,且x≥0时,f(x)=log
12
(x+1)

(1)求f(0),f(-1);
(2)求函数f(x)的表达式;
(3)若f(a-1)-f(3-a)<0,求a的取值范围.
分析:(1)由函数解析式和奇偶性,求得f(0)和f(1)的值.
(2)令x<0,则-x>0,从而有f(-x)=log
1
2
(-x+1)=f(x)
得到x<0时的解析式.最后两段写成分段函数的形式.
(3)易知f(x)=log
1
2
(x+1)
在[0,+∞)上为减函数,将“f(a-1)<f(3-a)”转化为f(|a-1|)>f(|3-a|)利用在(0,+∞)上的单调性求解.
解答:解:(1)f(0)=0(2分)f(-1)=f(1)=-(14分)
(2)令x<0,则-x>0f(-x)=log
1
2
(-x+1)=f(x)

∴x<0时,f(x)=log
1
2
(-x+1)
(8分)
f(x)=
log
1
2
(x+1),(x≥0)
log
1
2
(-x+1),(x<0)
(10分)
(3)∵f(x)=log
1
2
(x+1)
在[0,+∞)上为减函数,
∴f(x)在(-∞,0)上为增函数.
由于f(a-1)<f(3-a)
∴|a-1|>|3-a|(14分)
∴a>2.(16分)
点评:本题主要考查函数的奇偶性和单调性的综合运用,还考查了分段函数求解析式以及转化思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在(-4,4)上的奇函数,它在定义域内单调递减 若a满足f(1-a)+f(2a-3)小于0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
f(a)+f(b)
a+b
>0

(1)证明函数a=1在f(x)=-x2+x+lnx上是增函数;
(2)解不等式:f(
1
x-1
)>0,x∈(0,+∞);
(3)若f′(x)=-2x+1+
1
x
=-
2x2-x-1
x
对所有f'(x)=0,任意x=-
1
2
恒成立,求实数x=1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

8、已知f(x)是定义在R上的函数,f(1)=1,且对任意x∈R都有f(x+5)≥f(x)+5,f(x+1)≤f(x)+1.若g(x)=f(x)+1-x,则g(2009)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,+∞)上的偶函数,且在(-∞,0)上是增函数,设a=f(log47),b=f(log
12
3)
,c=f(0.2-0.6),则a,b,c的大小关系
a>b>c
a>b>c

查看答案和解析>>

同步练习册答案