精英家教网 > 高中数学 > 题目详情
19.(1-2x)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a3=-80.

分析 根据二项式展开式的通项公式为Tr+1=${C}_{5}^{r}$•(-2x)r,可得x3的系数a3=${C}_{5}^{3}$•(-2)3,运算求得结果.

解答 解:二项式展开式的通项公式为Tr+1=${C}_{5}^{r}$•(-2x)r,故x3的系数a3=${C}_{5}^{3}$•(-2)3=-80,
故答案为:-80.

点评 本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.在数列{an}中,Sn是它的前n项和,a1=2,且Sn+1=4an+2(n∈N*).
(Ⅰ)求a2和a3的值;
(Ⅱ)设bn=an+1-2an,求证:数列{bn}是等比数列;
(Ⅲ)若${c}_{n}=\frac{2n-1}{{b}_{n}}$,求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}是等差数列,a1=tan225°,a5=13a1,设Sn为数列{(-1)nan}的前n项和,则S2015=(  )
A.2015B.-2015C.3024D.-3022

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知cos2α=$\frac{1}{4}$,则sin2α=$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若集合A={x∈Z|-3<x<2},B{x∈R|x2≥-2x},则A∩B=(  )
A.{-3,-2,0,1}B.{-2,-1,0,1}C.[-3,2]∪[0,2)D.[-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=lnx-$\frac{a}{x}$,g(x)=f(x)+ax-6lnx(a∈R.)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)设函数h(x)=x2-mx+4,当a=2时,若?x1∈(0,1),?x2∈[1,2],总有g(x1)≥h(x2)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知(1+x)n=1+a1x+a2x2+…+anxn(n∈N*),且Sn=a1+2a2+…+nann∈N*,那么当n∈N*时,$\sum_{i=1}^n{S_i}$=(n-1)×2n +1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数$f(x)=3sin({ωx+\frac{π}{3}})\;({ω>0})$和g(x)=2cos(2x+φ)+1$({|φ|<\frac{π}{2}})$的图象的对称轴完全相同则φ的值为(  )
A.$\frac{π}{6}$B.$-\frac{π}{6}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知一扇形的弧所对的圆心角为54°,半径r=20cm,则扇形的周长为(  )
A.6π cmB.60 cmC.(40+6π) cmD.1 080 cm

查看答案和解析>>

同步练习册答案