精英家教网 > 高中数学 > 题目详情
解关于x的不等式
2
x
<1.
考点:其他不等式的解法
专题:不等式的解法及应用
分析:根据分式不等式的性质,解不等式即可.
解答: 解:原不等式可化为
2
x
-1<0.
2-x
x
<0
,也即x(x-2)>0,
即x>2或x<0.
所以原不等式的解集为{x|x>2或x<0}.
点评:本题主要考查分式不等式的解法,将分式不等式转化为等式不等式是解决此类问题的基本方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知圆C1:(x+1)2+y2=1,圆C2:(x-3)2+(y-4)2=1.
(Ⅰ)判断圆C1与圆C2的位置关系;
(Ⅱ)若动圆C同时平分圆C1的周长、圆C2的周长,则动圆C是否经过定点?若经过,求出定点的坐标;若不经过,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

a
b
是两个不共线的向量.
(1)若
AB
=
a
+
b
BC
=2
a
+8
b
CD
=3(
a
-
b
)求证:A、B、D三点共线;
(2)求实数k的值,使k
a
+
b
与2
a
+k
b
共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=Asin(ωx+
π
3
)(其中A>0,ω>0)的振幅为2,周期为π.
(Ⅰ)求f(x)的解析式;
(Ⅱ)求f(x)的单调增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

化简下列式子:
(1)(
x5y-3
2xy5
)-4+
4x5y-10
(3x-2y2)-3

(2)(
4b3c
1
3
6c
1
5
b
)
1
2
+(2b3c-
1
5
)-
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某小商品2013年的价格为8元/件,年销量为a件,现经销商计划在2014年将该商品的价格降至5.5元/件到7.5元/件之间,经调查,顾客的期望价格为4元/件,经测算,该商品的价格下降后新增的年销量与实际价格和顾客期望价格的差成反比,比例系数为k,该商品的成本价格为3元/件.
(1)写出该商品价格下降后,经销商的年收益y与实际价格x的函数关系式;
(2)设k=2a,当实际价格最低定为多少时,仍然可以保证经销商2014年的收益比2013年至少增长20%?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x∈(0,+∞)时,f(x)=ax+2lnx(a∈R).
(Ⅰ)求f(x)的解析式;
(Ⅱ)是否存在负实数a,使得当x∈[-e,0)时,f(x)的最小值是4?如果存在,求出a的值;如果不存在,请说明理由;
(Ⅲ)对x∈D,如果函数F(x)的图象在函数G(x)的图象的下方(没有公共点),则称函数 F(x)在D上被函数G(x)覆盖,若函数f(x)在区间x∈(1,+∞)上被函数g(x)=x3覆盖,求实数a的取值范围.(注:e是自然对数的底数,[ln(-x)]′=
1
x

查看答案和解析>>

科目:高中数学 来源: 题型:

采用系统抽样方法,从123人中抽取一个容量为12的样本,则抽样距为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=lg
x
2-x
的定义域为
 

查看答案和解析>>

同步练习册答案