精英家教网 > 高中数学 > 题目详情

【题目】如图,在三棱柱中,底面是边长为4的等边三角形,的中点.

1)证明:平面.

2)若是等边三角形,求二面角的正弦值.

【答案】1)证明见解析,(2

【解析】

1)根据等腰三角形三线合一证明即可得证;

2)建立空间直角坐标系,利用向量求解二面角.

1)证明:连接.

因为,所以,所以.

因为的中点,所以.

因为的中点,且,所以.

因为,所以平面.

2)解:取的中点,连接,因为是等边三角形,所以.

由(1)可知平面,则两两垂直,故以为原点,所在直线为轴,过的平行线为轴,所在直线为轴建立空间直角坐标系.

因为底面是边长为4的等边三角形,所以.

因为是等边三角形,所以.

所以,则.

设平面的法向量

,令,得.

易知平面的一个法向量为

记二面角,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】,分别为内角所对的边,且满足.

(Ⅰ)的大小;

(Ⅱ)现给出三个条件:.

试从中选出两个可以确定的条件,写出你的选择并以此为依据求的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为点,左、右顶点分别为,长轴长为,椭圆上任意一点(不与重合)与连线的斜率乘积均为.

(1)求椭圆的标准方程;

(2)如图,过点的直线与椭圆交于两点,过点的直线与椭圆交于两点,且,试问:四边形可否为菱形?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过两点,且圆心在直线上.

(1)求圆的方程;

(2)设圆轴相交于两点,点为圆上不同于的任意一点,直线轴于点.当点变化时,以为直径的圆是否经过圆内一定点?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】己知二次函数均为实常数,)的最小值是0,函数的零点是,函数满足,其中,为常数.

1)已知实数满足、,且,试比较的大小关系,并说明理由;

2)求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区实施光盘行动以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足升的,按升计算(如剩余升,记为剩余).例如:结账时,某桌剩余酒量恰好为升,则该桌的每位客人还应付.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的组数据(其中表示饮酒人数,()表示饮酒量):,,,,.

剩余酒量(单位:升)

升以上(含升)

结账时的倍率

1)求由这组数据得到的关于的回归直线方程;

2)小王约了位朋友坐在一桌饮酒,小王及朋友用量杯共量取了升啤酒,这时,酒吧服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请位或位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议?

参考数据:回归直线的方程是,其中,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,二面角中,,射线分别在平面内,点A在平面内的射影恰好是点B,设二面角与平面所成角、与平面所成角的大小分别为,则( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆与定点,动圆点且与圆相切

(1)求动圆圆心的轨迹的方程;

(2)若过定点的直线交轨迹于不同的两点,求弦长的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某冰糖橙,甜橙的一种,云南著名特产,以味甜皮薄著称。该橙按照等级可分为四类:珍品、特级、优级和一级(每箱有5kg,某采购商打算订购一批橙子销往省外,并从采购的这批橙子中随机抽取100箱,利用橙子的等级分类标准得到的数据如下表:

等级

珍品

特级

优级

一级

箱数

40

30

10

20

1)若将频率改为概率,从这100箱橙子中有放回地随机抽取4箱,求恰好抽到2箱是一级品的概率:

2)利用样本估计总体,庄园老板提出两种购销方案供采购商参考:

方案一:不分等级卖出,价格为27/kg;

方案二:分等级卖出,分等级的橙子价格如下:

等级

珍品

特级

优级

一级

售价(元/kg

36

30

24

18

从采购商的角度考虑,应该采用哪种方案?

3)用分层抽样的方法从这100箱橙子中抽取10箱,再从抽取的10箱中随机抽取3箱,X表示抽取的是珍品等级,求x的分布列及数学期望EX.

查看答案和解析>>

同步练习册答案