【题目】已知圆
与定点
,动圆
过
点且与圆
相切.
(1)求动圆圆心
的轨迹
的方程;
(2)若过定点
的直线
交轨迹
于不同的两点
、
,求弦长
的最大值.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,动点P(x,y)到两条坐标轴的距离之和等于它到点(1,1)的距离,记点P的轨迹为曲线W,给出下列四个结论:
①曲线W关于原点对称;
②曲线W关于直线y=x对称;
③曲线W与x轴非负半轴,y轴非负半轴围成的封闭图形的面积小于
;
④曲线W上的点到原点距离的最小值为![]()
其中,所有正确结论的序号是________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某服装公司,为确定明年
类服装的广告费用,对往年广告费
(单位:千元)对年销售量
(单位:件)和年利润
(单位:千元)的影响.对2011-2018广告费
和年销售量
数据进行了处理,分析出以下散点图和统计量:
![]()
|
|
|
|
|
|
|
45 | 580 | 2025 | 297 | 1600 | 960 | 1440 |
表中![]()
(1)由散点图可知,
和
更适合作为年销售量
关于年广告费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果和表中数据求
关于
的回归方程.
(3)已知该类服装年利率
与
的关系为
.由(2)回答以下问题:年广告费用
等于60时,年销售量及年利润的预报值为多少?年广告费用为何值时,年利率的预报值最小?
对于一组数据
,其回归线
的斜率和截距的最小二乘估计分别为:![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的一元二次不等式ax2+x+b>0的解集为(-∞,-2)∪(1,+∞).
(Ⅰ)求a和b的值;
(Ⅱ)求不等式ax2-(c+b)x+bc<0的解集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设L、M、N分别为
的∠BAC、∠ CBA、∠ ACB内的点,且∠BAL=∠ ACL,∠ LBA=∠ LAC,∠ CBM=∠ BAM,∠ MCB=∠ MBA,∠ ACN=∠ CBN,∠ NAC=∠ NCB.
![]()
证明:(1) AL、BM、CN三线交于一点P;
(2)L、M、N、P四点共圆.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把函数
的图象上所有点的横坐标缩小到原来的
倍(纵坐标不变),再把得到图象上所有点向右平移
个单位长度,得到函数
的图象.则下列命题正确的是( )
A.函数
在区间
,
上单调递减
B.函数
在区间
,
上单调递增
C.函数
的图象关于直线
,
对称
D.函数
的图象关于点
,
对称
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com