(本小题满分12分)
已知函数f(x)=x2(x-3a)+1 (a>0,x∈R).
(I)求函数y=f(x)的极值;
(II)函数y=f(x)在(0,2)上单调递减,求实数a的取值范围;
(III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.
(I)当a>0时,在x=0处,函数f(x)有极大值f(0)=1;在x=2a处,函数f(x)有极小值f(2a)=-4a3+1 .
(II)a≥1
(III)a≥.
【解析】解:f'(x)=3x(x-2a),令f'(x)=0,得x=0或x=2a .
f(0)=1,f(2a)=-4a3+1 .
(I)当a>0时,2a>0,当x变化时,f'(x),f(x)的变化情况如下表:
x |
(-∞,0) |
0 |
(0,2a) |
2a |
(2a,+∞) |
f'(x) |
+ |
0 |
- |
0 |
+ |
f(x) |
↗ |
1 |
↘ |
-4a3+1 |
↗ |
∴ 当a>0时,在x=0处,函数f(x)有极大值f(0)=1;在x=2a处,函数f(x)有极小值f(2a)=-4a3+1 .
(II)在(0,2)上单调递减,∴ 2a≥2,即a≥1 .
(III)依题意得 4a3≥f(x)min4a3≥-4a3+18a3≥1a≥.
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com