精英家教网 > 高中数学 > 题目详情

(本小题满分12分)

已知函数f(x)=x2(x-3a)+1 (a>0,x∈R).

(I)求函数yf(x)的极值;

(II)函数yf(x)在(0,2)上单调递减,求实数a的取值范围;

(III)若在区间(0,+∞)上存在实数x0,使得不等式f(x0)-4a3≤0能成立,求实数a的取值范围.

 

【答案】

(I)当a>0时,在x=0处,函数f(x)有极大值f(0)=1;在x=2a处,函数f(x)有极小值f(2a)=-4a3+1 .

(II)a≥1

(III)a.

【解析】解:f'(x)=3x(x-2a),令f'(x)=0,得x=0或x=2a .

f(0)=1,f(2a)=-4a3+1 .

(I)当a>0时,2a>0,当x变化时,f'(x),f(x)的变化情况如下表:

x

(-∞,0)

0

(0,2a)

2a

(2a,+∞)

f'(x)

0

0

f(x)

1

-4a3+1

∴ 当a>0时,在x=0处,函数f(x)有极大值f(0)=1;在x=2a处,函数f(x)有极小值f(2a)=-4a3+1 .

(II)在(0,2)上单调递减,∴ 2a≥2,即a≥1 .

(III)依题意得 4a3f(x)min4a3≥-4a3+18a3≥1a.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(文) (本小题满分12分已知函数y=4-2
3
sinx•cosx-2sin2x(x∈R)

(1)求函数的值域和最小正周期;
(2)求函数的递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•自贡三模)(本小题满分12分>
设平面直角坐标中,O为原点,N为动点,|
ON
|=6,
ON
=
5
OM
.过点M作MM1丄y轴于M1,过N作NN1⊥x轴于点N1
OT
=
M1M
+
N1N
,记点T的轨迹为曲线C.
(I)求曲线C的方程:
(H)已知直线L与双曲线C:5x2-y2=36的右支相交于P、Q两点(其中点P在第-象限).线段OP交轨迹C于A,若
OP
=3
OA
,S△PAQ=-26tan∠PAQ求直线L的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)已知函数,且。①求的最大值及最小值;②求的在定义域上的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009湖南卷文)(本小题满分12分)

为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.现有3名工人独立地从中任选一个项目参与建设.求:

(I)他们选择的项目所属类别互不相同的概率;    w.w.w.k.s.5.u.c.o.m    

(II)至少有1人选择的项目属于民生工程的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分12分)

某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,

(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.

查看答案和解析>>

同步练习册答案