精英家教网 > 高中数学 > 题目详情

【题目】函数f(x)=log2(x+2)的定义域是(
A.[2,+∞)
B.[﹣2,+∞)
C.(﹣2,+∞)
D.(﹣∞,﹣2)

【答案】C
【解析】解:函数f(x)=log2(x+2)有意义,

可得x+2>0,

解得x>﹣2,

则f(x)的定义域为(﹣2,+∞).

故选:C.

【考点精析】利用函数的定义域及其求法对题目进行判断即可得到答案,需要熟知求函数的定义域时,一般遵循以下原则:①是整式时,定义域是全体实数;②是分式函数时,定义域是使分母不为零的一切实数;③是偶次根式时,定义域是使被开方式为非负值时的实数的集合;④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1,零(负)指数幂的底数不能为零.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差为2,前n项和为Sn , 且S1 , S2 , S4成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=(﹣1)n1 ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线y=﹣x+1与椭圆 + =1(a>b>0)相交于A、B两点,且线段AB的中点在直线l:x﹣2y=0上,求此椭圆的离心率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某产品在某销售点的零售价x(单位:元)与每天的销售量y(单位:个)的统计数据如表所示:

x

16

17

18

19

y

50

34

41

31

由表可得回归直线方程 中的 ,根据模型预测零售价为20元时,每天的销售量约为(
A.30
B.29
C.27.5
D.26.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,定圆C半径为2,A为圆C上的一个定点,B为圆C上的动点,若点A,B,C不共线,且| | |对任意t∈(0,+∞)恒成立,则 =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题p:方程 =1表示焦点在y轴上的椭圆;命题q:双曲线 =1的离心率e∈(1,2).若命题p、q有且只有一个为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足f(0)=0,f(x)+f(1﹣x)=1,f( )= f(x)且当0≤x1<x2≤1时,f(x1)≤f(x2),则f( )等于(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为方便市民休闲观光,市政府计划在半径为200米,圆心角为120°的扇形广场内(如图所示),沿△ABC边界修建观光道路,其中A、B分别在线段CP、CQ上,且A、B两点间距离为定长 米.
(1)当∠BAC=45°时,求观光道BC段的长度;
(2)为提高观光效果,应尽量增加观光道路总长度,试确定图中A、B两点的位置,使观光道路总长度达到最长?并求出总长度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的圆心在射线y=2x﹣3(x≥0),且与直线y=x+2和y=﹣x+4都相切.
(1)求圆C的方程;
(2)若P(x,y)是圆C上任意一点,求x+2y的最大值.

查看答案和解析>>

同步练习册答案