精英家教网 > 高中数学 > 题目详情
已知曲线为参数),为参数).
(1)化的方程为普通方程,并说明它们分别表示什么曲线;
(2)过曲线的左顶点且倾斜角为的直线交曲线两点,求.
(1),曲线为圆心是,半径是1的圆,曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆;(2).

试题分析:本题考查参数方程与普通方程的互化,考查学生的转化能力和计算能力.第一问,利用参数方程与普通方程的互化方法转化方程,再根据曲线的标准方程判断曲线的形状;第二问,根据已知写出直线的参数方程,与曲线联立,根据韦达定理得到两根之和两根之积,再利用两根之和两根之积进行转化求出.
试题解析:⑴
曲线为圆心是,半径是1的圆.
曲线为中心是坐标原点,焦点在x轴上,长轴长是8,短轴长是6的椭圆.   4分
⑵曲线的左顶点为,则直线的参数方程为为参数)
将其代入曲线整理可得:,设对应参数分别为

所以.        10分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

参数方程为参数)化为普通方程是                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若曲线与曲线在它们的公共点处具有具有公共切线,则
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知在直角坐标系xOy中,曲线C的参数方程为 (θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin =2.
(1)求曲线C在极坐标系中的方程;
(2)求直线l被曲线C截得的弦长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知两曲线参数方程分别为(0≤θ<π)和(t∈R),它们的交点坐标为             

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面坐标系,圆的参数方程为参数),若圆相切,则实数           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

参数方程为表示的曲线是(    ).
A.一条直线B.两条直线C.一条射线D.两条射线

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是曲线上任意一点,则的最大值是 ( )
A.36B.6C.26D.25

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若圆的方程为为参数),直线的方程为(t为参数),则直线与圆的位置关系是(     )。
A.相交过圆心B.相交而不过圆心C.相切D.相离

查看答案和解析>>

同步练习册答案