精英家教网 > 高中数学 > 题目详情
16.函数y=f(x)与y=g(x)的图象如图,则函数y=f(x)•g(x)的图象为(  )
A.B.C.D.

分析 由图象得到函数f(x)和g(x)的奇偶性和函数的定义域,继而得到=f(x)•g(x)为奇函数,且定义域为{x|x≠0},问题得以解决.

解答 解:由图象可知,y=f(x)为偶函数,其定义域为R,y=g(x)为奇函数,其定义域为{x|x≠0}
∴f(-x)•g(x)=-f(x)•g(x),
∴y=f(x)•g(x)为奇函数,且定义域为{x|x≠0}
∴f(x)•g(x)的图象关于原点对称,
故选:A.

点评 本题考查了函数的奇偶性和函数图象的识别,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知集合A={y|y=log2x,x>1},B={y|y=($\frac{1}{2}$)x,x>2},则A∩B等于(  )
A.{y|0$<y<\frac{1}{4}$}B.{y|0<y<1}C.{y|$\frac{1}{4}$<y<1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数f(x)=2x+$\frac{2a-1}{{x}^{2}}$是奇函数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:2${\;}^{lo{g}_{4}(lg3-1)^{2}}$+3${\;}^{lo{g}_{81}(lg\frac{1}{3}-2)^{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设f(x)=x2-2|x|-3,在下列直角坐标系中画出f(x)的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.角α顶点在原点,起始边与x轴正半轴重合,终边过点(-1,-2),则sinα为-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=1,$\overrightarrow{a}$•$\overrightarrow{b}$=-$\frac{1}{2}$,2($\overrightarrow{a}$-$\overrightarrow{c}$)($\overrightarrow{b}$-$\overrightarrow{c}$)=|$\overrightarrow{a}$-$\overrightarrow{c}$||$\overrightarrow{b}$-$\overrightarrow{c}$|,则|$\overrightarrow{c}$|的最大值为(  )
A.2B.$\sqrt{3}$C.$\sqrt{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)是二次函数,且f(-1)=4,f(0)=1,f(3)=4.
(1)求f(x)的解析式.
(2)若x∈[-1,5],求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点P(x,y)是曲线x2+y2-2x=0上的动点.
(1)求3x+$\sqrt{3}y$的取值范围;
(2)若x+y+a≥0恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案