精英家教网 > 高中数学 > 题目详情
4.计算:2${\;}^{lo{g}_{4}(lg3-1)^{2}}$+3${\;}^{lo{g}_{81}(lg\frac{1}{3}-2)^{4}}$.

分析 利用对数的运算法则、对数恒等式即可得出.

解答 解:原式=${2}^{lo{g}_{2}(1-lg3)}$+${3}^{lo{g}_{3}(2+lg3)}$
=1-lg3+2+lg3
=3.

点评 本题考查了对数的运算性质、对数恒等式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数y=$\sqrt{lo{g}_{3}x-3}$的定义域是(  )
A.(9,+∞)B.[9.+∞)C.[27,+∞)D.(27,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.lg22+lg25+lg5lg4的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知a2n=$\sqrt{2}$+1,则$\frac{{a}^{3n}+{a}^{-3n}}{{a}^{n}+{a}^{-n}}$的值为$2\sqrt{2}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知函数f(x+2)的定义域为[-2,2],则函数y=f(x-1)-f(x+1)的定义域(  )
A.[-1,1]B.[-2,2]C.[1,3]D.[-1,5]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)计算:${8}^{\frac{2}{3}}$-$\sqrt{(\sqrt{2}-1)^{2}}$+2${\;}^{\frac{3}{2}}$+($\frac{1}{3}$)0
(2)已知a>0,且a-a-1=3,求值:①a2+a-2;$②\frac{{(a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数y=f(x)与y=g(x)的图象如图,则函数y=f(x)•g(x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知p:|x-1|≤2,q:(x-m+1)(x-m-1)≤0,
(1)设集合A={x|¬p},集合B={x|¬q},求集合A,B;
(2)若¬p是¬q的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.
x3456
y2.5344.5
(1)请画出上表数据的散点图;
(2)产品的产量与相应的生产能耗之间的关系是否具有线性相关性?若具有,请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程$\hat y$=bx+a;
(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤. 试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?
计算第(2)(3)问时可能会用到的参考信息:3×2.5+4×3+5×4+6×4.5=66.5参考公式:回归直线方程:$\widehaty=\widehatbx+\widehata$
线性回归方程中a,b的估计值$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$,$\widehat{b}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{(\overline x)}^2}}}}$
参考公式:其中,a=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$  $\hat a=\bar y-b\bar x$.

查看答案和解析>>

同步练习册答案