精英家教网 > 高中数学 > 题目详情
9.(1)计算:${8}^{\frac{2}{3}}$-$\sqrt{(\sqrt{2}-1)^{2}}$+2${\;}^{\frac{3}{2}}$+($\frac{1}{3}$)0
(2)已知a>0,且a-a-1=3,求值:①a2+a-2;$②\frac{{(a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$.

分析 (1)由已知条件利用分数指数幂的性质和运算法则直接求解.
(2)由a>0,且a-a-1=3,利用完全平方和公式和平方差公式及立方和公式能求出a2+a-2和$\frac{{(a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$的值.

解答 解:(1)${8}^{\frac{2}{3}}$-$\sqrt{(\sqrt{2}-1)^{2}}$+2${\;}^{\frac{3}{2}}$+($\frac{1}{3}$)0
=4-($\sqrt{2}-1$)+2$\sqrt{2}$+1
=6+$\sqrt{2}$.
(2)∵a>0,且a-a-1=3,
∴①a2+a-2=(a-a-12+2=9+2=11.
$②\frac{{(a}^{3}+{a}^{-3})({a}^{2}+{a}^{-2}-3)}{{a}^{4}-{a}^{-4}}$
=$\frac{(a+{a}^{-1})({a}^{2}+{a}^{-2}-1)({a}^{2}+{a}^{-2}-3)}{(a-{a}^{-1})(a+{a}^{-1})({a}^{2}+{a}^{-2})}$
=$\frac{(11-1)(11-3)}{3×11}$
=$\frac{80}{33}$.

点评 本题考查有理数指数幂的化简求值,是基础题,解题时要认真审题,注意分数指数幂的性质和运算法则、完全平方和公式和平方差公式及立方和公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.化简:
(1)1g52+$\frac{2}{3}$1g8+1g51g20+(lg2)2
(2)(1og25+log40.2)(log52+log250.5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=f(x)为R上的奇函数,且f(x+2)=f(x),当0<x≤1时,f(x)=2x,若常数a∈(3,4],则f(a)=-24-a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=($\frac{1}{3}$)${\;}^{{x}^{2}-4x}$的定义域、值域、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.计算:2${\;}^{lo{g}_{4}(lg3-1)^{2}}$+3${\;}^{lo{g}_{81}(lg\frac{1}{3}-2)^{4}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.关于x的不等式ax-b>0的解集是($\frac{1}{2}$,+∞),则关于x的不等式$\frac{ax-2b}{-x+5}$>0的解集是(  )
A.(1,5)B.(1,+∞)C.(-∞,5)D.(-∞,1)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.角α顶点在原点,起始边与x轴正半轴重合,终边过点(-1,-2),则sinα为-$\frac{2\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.两平行线3x+4y-2=0和6x+8y+7=0之间的距离是$\frac{11}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.圆心在直线2x-y=3上,且与两坐标轴均相切的圆的标准方程是(x-3)2+(y-3)2=9或(x-1)2+(y+1)2=1.

查看答案和解析>>

同步练习册答案