精英家教网 > 高中数学 > 题目详情
18.计算:$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$+log2(1+$\sqrt{2}$+$\sqrt{3}$)+log2(1+$\sqrt{2}$-$\sqrt{3}$)-log23log34.

分析 根据对数的运算性质和换底公式计算即可.

解答 解:$\frac{2lg2+lg3}{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}$+log2(1+$\sqrt{2}$+$\sqrt{3}$)+log2(1+$\sqrt{2}$-$\sqrt{3}$)-log23log34,
=$\frac{lg12}{1+lg0.6+lg2}$+log2(1+$\sqrt{2}$+$\sqrt{3}$)(1+$\sqrt{2}$-$\sqrt{3}$)-$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$,
=1+log22$\sqrt{2}$-2,
=1+$\frac{3}{2}$-2
=$\frac{1}{2}$.

点评 本题考查了对数的运算性质和换底公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)=x3+x+a,x∈R为奇函数,则a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设集合M={x|-1≤x≤2},N={x|x-k≤0},若M∪N=N,则实数k的取值范围是[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.(1)函数f(x)=(m2-m-1)x${\;}^{{m}^{2}-2m-3}$是幂函数,且在(0,+∞)上是减函数,求m的值;
(2)已知函数y=x${\;}^{{n}^{2}-2n-3}$(n∈Z)的图象与两坐标轴均无交点,且其图象关于y轴对称.
①求出n的值;
②画出函数图象的示意图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)若函数f(x)=ax一(k-1)a-x(a>0.且a≠1)是定义在R上的奇函数.求实数k的值.
(2)求函数g(x)=loga(ax-a2)(a>0.且a≠1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知成等比数列的三个数a+8、a+2、a-2分别为等差数列的第1、4、6项,则这个等差数列前n项和的最大值为90.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若函数f(x)=-x2+ax+4在区间(-∞,1]上递增,在[1,+∞)递减.
(1)求a的值;
(2)求g(x)=a${\;}^{-{x}^{2}-2x}$的值域;
(3)解关于x的不等式:loga(-2x+3)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x${\;}^{\frac{1}{2}}$+x-${\;}^{\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$\frac{1-i}{{{{({1+i})}^2}}}$=(  )
A.$\frac{1}{2}$+$\frac{i}{2}$B.1+$\frac{i}{2}$C.-$\frac{1}{2}$-$\frac{i}{2}$D.1-$\frac{i}{2}$

查看答案和解析>>

同步练习册答案