精英家教网 > 高中数学 > 题目详情

【题目】已知函数fx)=|xa|+|x+2|.

1)若a1.解不等式fxx21

2)若a0b0c0.fx)的最小值为4bc.求证:.

【答案】1{x|x2x≥1}2)证明见解析

【解析】

1)对绝对值函数进行分段讨论,解不等式即可;

2)求出的最小值,得到,利用柯西不等式证明即可.

1)当a1时,fx)=|x1|+|x+2|

x2时,﹣2x1≤x21,得x2+2x≥0,所以x2

当﹣2x1时,3≤x21,得x2≥4,无解

x≥1时,由2x+1≤x21,得x22x2≥0,得x≥1

综上,不等式的解集为{x|x2x≥1}

2)证明:

因为fx)=|xa|+|x+2|≥|xax2||a+2|a+24bc

a+b+c2

所以2

当且仅当a+bc1时成立,

故原命题得证.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】公元前世纪的毕达哥拉斯是最早研究完全数的人.完全数是一种特殊的自然数,它所有的真因子(即除了自身以外的约数)的和恰好等于它本身.若从集合中随机抽取两个数,则这两个数中有完全数的概率是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,若函数4个不同的零点,且,则的取值范围是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线C的参数方程为t为参数),直线过点且倾斜角为,以坐标原点O为极点,x轴正半轴为极轴,取相同的单位长度建立极坐标系.

1)写出曲线C的极坐标方程和直线的参数方程;

2)若直线l与曲线C交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体ABCDEF满足:正方形ABCD与正三角形FBC所在的两个平面互相垂直,FBAEFB2EA.

1)证明:平面EFD⊥平面ABFE

2)若AB2,求多面体ABCDEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是椭圆的左右顶点,点为椭圆上一点,点关于轴的对称点为,且.

1)若椭圆经过圆的圆心,求椭圆的方程;

2)在(1)的条件下,若过点的直线与椭圆相交于不同的两点,设为椭圆上一点,且满足为坐标原点),当时,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx﹣ax,其中a为实数.

(1)求出f(x)的单调区间

(2)在a<1时,是否存在m>1,使得对任意的x∈(1,m),恒有f(x)+a>0,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在以ABCDEF为顶点的多面体中,四边形是菱形,

1)求证:平面ABC⊥平面ACDF

2)求平面AEF与平面ACE所成的锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地在国庆节天假期中的楼房认购量(单位:套)与成交量(单位:套)的折线图如图所示,小明同学根据折线图对这天的认购量与成交量作出如下判断:①成交量的中位数为;②认购量与日期正相关;③日成交量超过日平均成交量的有天,则上述判断中正确的个数为(

A.B.C.D.

查看答案和解析>>

同步练习册答案