精英家教网 > 高中数学 > 题目详情
(2012•开封一模)已知点G是△ABC的重心,若∠A=120°,
AB
AC
=-2,则|
AG
|的最小值是
2
3
2
3
分析:根据点G是△ABC的重心,故
AG
=
1
3
AB
+
AC
),又由∠A=120°,
AB
AC
=-2,我们可以求出|
AB
|•|
AC
|=4,进而根据基本不等式,求出|
AB
+
AC
|的取值范围,进而得到|
AG
|的最小值.
解答:解:∵∠A=120°,
AB
AC
=-2,
∴|
AB
|•|
AC
|=4,
又∵点G是△ABC的重心,
∴|
AG
|=
1
3
|
AB
+
AC
|=
1
3
(
AB
+
AC
)2
=
1
3
|
AB
|2+|
AC
|
2
+2
AB
AC
1
3
2|
AB
| •|
AC
|
 
+2
AB
AC
=
2
3

故答案为:
2
3
点评:本题考查的知识点是向量的模,三角形的重心,基本不等式,其中利用基本不等式求出|
AB
+
AC
|的取值范围是解答本题的关键,另外根据点G是△ABC的重心,得到
AG
=
1
3
AB
+
AC
),也是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•开封一模)已知点M(1,0)是圆C:x2+y2-4x-2y=0内一点,则过点M的最长弦所在的直线方程是
x-y-1=0
x-y-1=0

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)已知实数x,y满足条件
x-y+2≥0
0≤x≤3
y≥0
,则目标函数z=2x-y的最大值是
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,E,F分别是BC,PC的中点.
(Ⅰ)求证:AE⊥PD;
(Ⅱ)若直线PB与平面PAD所成角的正弦值为
6
4
,求二面角E-AF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)已知双曲线的渐近线均和圆C:x2+y2-6x+5=0相切,且双曲线的右焦点为圆C的圆心,则该双曲线的方程为
x2
5
-
y2
4
=1
x2
5
-
y2
4
=1

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•开封一模)已知函数h(x)=ln(ax+b)在点M(1,h(1))处的切线方程为x-2y+ln4-1=0.
(Ⅰ)求a,b的值;
(Ⅱ)若f(x)=[h(x)]2-
x2
1+x
,求函数f(x)的单调区间.
(Ⅲ)求m的取值范围,使不等式(1+
1
n
)n+m≤e
对任意的n∈N*都成立(其中e是自然对数的底数).

查看答案和解析>>

同步练习册答案